Resolving Tiny Structures: De-Broglie-Relation & Relativity

  • Thread starter Thread starter Anton Alice
  • Start date Start date
  • Tags Tags
    Structures
Anton Alice
Messages
68
Reaction score
1
Hello,

I was wondering, if the de-Broglie-relation for particle waves already includes relativistic effects?

Suppose I want to resolve an atomic structure of about, say, 0.1 nanometers. For an attempt using particle waves I would need a certain momentum p=h/0.1nm, at least.
Now comes the question: The particle wave sees the contracted version of the atomic structure. Doesnt this mean that I have to include a gamma into the nominator? p would then be gamma*m*v, and then the gammas would cancel, leading to: mv=h/0.1nm, whereby mv stands for the classical momentum. Something is wrong here...

EDIT:
I think my problem is, that I mixed up different reference frames. I have to stay in one reference frame, which I chose to be the the one of the observer. The observer observes an atomic structure of 0.1nm, and observes a particle with speed v (and corresponding p). These two observations have to fit together, i.e. the de-Broglie-relation needs to be fulfilled. And if it is fulfilled in one reference frame, then also in any other. Like saying, if barack obama has been elected in one reference frame, then also he is or will be in any other.
Can you elaborate on this?
 
Last edited:
Physics news on Phys.org
Anton Alice said:
Like saying, if barack obama has been elected in one reference frame, then also he is or will be in any other.
Can you elaborate on this?

That's pretty much it.
 
Anton Alice said:
I was wondering, if the de-Broglie-relation for particle waves already includes relativistic effects?
Are you familiar with four-vectors? The relativistic de Broglie relationship is simply ##p=\hbar k## where p is the four momentum and k is the four-wavevector.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top