MHB Resurrecting a previous post. Coprime mod n implies coprime-ish mod n.

  • Thread starter Thread starter caffeinemachine
  • Start date Start date
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
This was a question posted a long time ago by Swlabr but somehow the thread died.
Let $a$ and $b$ be two integers such that there exists integers $p$, $q$ with $ap+bq=1\text{ mod }n$. Do there exist integers $a^{\prime}$ $b^{\prime}$, $p^{\prime}$ and $q^{\prime}$ such that, $x^{\prime}=x\text{ mod }n$ for $x\in\{a, b, p, q\}$ and, $$a^{\prime}p^{\prime}+b^{\prime}q^{\prime}=1?$$.This was my response.
If $\gcd (a,b)=1$ then yes.

$ap+bq \equiv 1 \mod n$ means there exist integer $\gamma$ such that $ap + bq+n \gamma =1$ . If $\gcd (a, b)=1$ then $\exists k_1, k_2$ such that

$ak_1+bk_2=\gamma$.

Take $a{'} =a, b{'}=b, p{'}=p+nk_1, q{'}=q+nk_2$

Then $a{'}b{'} +b{'}q{'}=1$

I am not sure what happens when $\gcd (a,b) \neq 1$.

Ideas anyone?

The original thread is http://www.mathhelpboards.com/f15/coprime-mod-%24n%24-implies-coprime-ish-mod-%24n%24-624/#post3495
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: ressurecting a previous post. Coprime mod $n$ implies coprime-ish mod $n$.

Here's what I think,
From $ap + bq+n \gamma =1$, it's evident that $(a,b)$ is coprime to $\gamma$. Then I look for solutions in the form $p'=p+nx$,$q'=q+ny$, so if we want $ap'+bq'=1$ we are led to $ax+by=\gamma$, which has a solution.
 
Re: ressurecting a previous post. Coprime mod $n$ implies coprime-ish mod $n$.

melese said:
Here's what I think,
From $ap + bq+n \gamma =1$, it's evident that $(a,b)$ is coprime to $\gamma$. Then I look for solutions in the form $p'=p+nx$,$q'=q+ny$, so if we want $ap'+bq'=1$ we are led to $ax+by=\gamma$, which has a solution.
Hey melese! You have helped me a lot at MHF(I used abhishekkgp as my nick there). Thanks for showing interest in this thread.

Now, from what I understand you use the fact that $ax+by=\gamma$ has a solution. Ok.. I'll assume, for the moment, that it does. Write $g=\gcd(a,b)$. This would mean that $g| \gamma$. But from $ap+bq+n\gamma=1$ we'd have $g|1$ as $g$ divides $a,b$ and $\gamma$. This would force that $\gcd(a,b)=1$ which is not a necessity in the hypothesis.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top