Reverse direction for complex functions

Click For Summary

Discussion Overview

The discussion revolves around the properties of complex integrals, specifically addressing the relationship between integrals taken in opposite directions, represented by the equation $ \int_{a}^{b}f(z) \,dz = -\int_{b}^{a}f(z) \,dz $. Participants explore the necessity of parameterizing or expanding complex functions and the implications of analyticity on the path independence of integrals.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants recall the relationship between integrals for real functions and question its applicability to complex functions without assuming analyticity.
  • One participant suggests that if the integral does not depend on the path connecting points in the complex plane, then the function must be analytic, leading to the stated relationship.
  • Another participant points out that the exercise does not specify that the function is analytic, raising concerns about the validity of applying the same reasoning as for real functions.
  • Participants discuss the implications of Cauchy's Integral Theorem, noting that it states the integral is path-independent for analytic functions, which could suggest that parameterization or expansion may not be necessary.
  • One participant provides an example using the function $f(z) = \frac{1}{z}$, illustrating how different paths yield different integral values, thereby demonstrating that the function's singularity affects the relationship.
  • There is a concern expressed about the assumption of analyticity, questioning whether expanding or parameterizing a non-analytic function could lead to a valid conclusion regarding the sign change of the integral.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether the assumption of analyticity is necessary for the relationship between integrals in opposite directions to hold. There are competing views regarding the need for parameterization or expansion of the function.

Contextual Notes

The discussion references Cauchy's Integral Theorem and highlights the importance of singularities in determining the behavior of complex integrals. The example provided illustrates the impact of path choice on the integral's value.

ognik
Messages
626
Reaction score
2
Hi

An exercise asks to show $ \int_{a}^{b}f(z) \,dz = -\int_{b}^{a}f(z) \,dz $
I can remember this for real functions, something like $ G(x) = \int_{a}^{b}f(x) \,dx = G(b) - G(a), \therefore \int_{b}^{a}f(x) \,dx = G(a) - G(b) = -\int_{a}^{b}f(x) \,dx $

I have seen 2 approaches, either parametizing w.r.t t or expanding z=u+iv, what I don't understand is why I need to paramatise/expand f(z)? Both of those approaches also have complex intergrands, so why does the paramatise/expand step make a difference?
 
Physics news on Phys.org
ognik said:
Hi

An exercise asks to show $ \int_{a}^{b}f(z) \,dz = -\int_{b}^{a}f(z) \,dz $
I can remember this for real functions, something like $ G(x) = \int_{a}^{b}f(x) \,dx = G(b) - G(a), \therefore \int_{b}^{a}f(x) \,dx = G(a) - G(b) = -\int_{a}^{b}f(x) \,dx $

I have seen 2 approaches, either parametizing w.r.t t or expanding z=u+iv, what I don't understand is why I need to paramatise/expand f(z)? Both of those approaches also have complex intergrands, so why does the paramatise/expand step make a difference?

If the integral $\displaystyle \int_{a}^{b} f(z)\ d z$ does not depend on the path connecting a and b in the complex plane, then f(z) is analytic in the whole complex plane and effectively is $\displaystyle \int_{a}^{b} f(z)\ d z = - \int_{b}^{a} f(z)\ d z$...

... otherwise, i.e. if f(z) has some singularities in the complex plane, that may be not true...

Kind regards

$\chi$ $\sigma$
 
Thanks χ σ , but the exercise doesn't specify that f(z) is analytic.

Maybe more context would help - it appears just after a section on Cauchys Integral theorem.

That section also says: "A consequence of the Cauchy integral theorem is that for analytic functions the line integral is a function only of its end points, independent of the path of integration," - which would surely mean I could directly use the same argument I used for real functions above, WITHOUT paramatising or expanding, wouldn't it?
 
ognik said:
Thanks χ σ , but the exercise doesn't specify that f(z) is analytic.

Maybe more context would help - it appears just after a section on Cauchys Integral theorem.

That section also says: "A consequence of the Cauchy integral theorem is that for analytic functions the line integral is a function only of its end points, independent of the path of integration," - which would surely mean I could directly use the same argument I used for real functions above, WITHOUT paramatising or expanding, wouldn't it?

The difference between integrating in $\mathbb {R}$ and integrate in $\mathbb {C}$ is that in the second case it must be generally specify not only the limits of integration a and b, but also the path that connects a and b...

Let's consider the following illustrative example taking $f(z) = \frac{1}{z}, a=1, b=-1$ and suppose to choose as path of integration the upper half cirle of the figure...
http://cdn.simplesite.com/i/c2/c2/286260055773790914/i286260064307432655._szw1280h1280_.jpg

Setting $\displaystyle z=e^{i\ \theta}$ we have...

$\displaystyle \int_{1}^{-1} \frac{d z}{z} = i\ \int_{0}^{\pi} d \theta = i\ \pi\ (1)$

Now we have to integrate from -1 to 1 and, among other, we have the opportunity to choose two different paths...

a) the upper half circle in the figure, i.e. the reverse path than the previous case, and we have...

$\displaystyle \int_{-1}^{1} \frac{d z}{z} = i\ \int_{\pi}^{0} d \theta = - i\ \pi\ (2)$

... so that Your relation is verified...

b) the bottom half circle of the figure and we have...

$\displaystyle \int_{- 1}^{1} \frac{d z}{z} = i\ \int_{\pi}^{2\ \pi} d \theta = i\ \pi\ (3)$

... and Your relation isn't verified...

The reason of that is that the function $f(z)= \frac{1}{z}$ is not analytic in the whole complex plan, having a singularity in z=0...

Kind regards

$\chi$ $\sigma$
 
Thanks χ σ ,
I know that if a function is complex analytic, it is independent of the path - so it seems to me I have no other option but to assume F(z) is analytic?

My concern is that the solutions I have seen either expand the function (u,v) or parametise it (t) - and then conclude that the reverse integral does change sign. But my logic says - if the function is not analytic, then neither expanding nor parametising will suddenly make it analytic?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K