MHB Rickkyredu's question at Yahoo Answers (shell method for solid of revolution)

Click For Summary
The discussion focuses on using the Shell Method to calculate the volume of a solid formed by rotating the area between the curves y=x^5 and y=sqrt[5]{x} around the y-axis. The volume of an arbitrary shell is expressed as dV=2πrh dx, with r=x and h=x^(1/5)-x^5. The limits of integration are determined by finding the intersection points of the two curves, which are x=0 and x=1. The final volume is computed through integration, resulting in V=48π/77. This method effectively demonstrates the application of the Shell Method in calculus.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Shell method calculus?

Use the Shell Method to compute the volume of the solid obtained by rotating the region in the first quadrant enclosed by the graphs of the functions y=x^{5} and y=sqrt[5]{x} about the y-axis.

Here is a link to the question:

Shell method calculus? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello Rickkyredu,

The first thing I like to do in these problems, is look at a graph of the region to be rotated:

View attachment 607

Next, I like to compute the volume of 1 arbitrary shell:

$\displaystyle dV=2\pi rh\,dx$

where:

$\displaystyle r=x,\,h=x^{\frac{1}{5}}-x^5$

and so we have:

$\displaystyle dV=2\pi x\left(x^{\frac{1}{5}}-x^5 \right)\,dx=2\pi\left(x^{\frac{6}{5}}-x^6 \right)\,dx$

Next, we need to find the limits of integration, i.e., the $x$-cooridnates of the points of intersection for the two curves:

$\displaystyle x^{\frac{1}{5}}=x^5$

$\displaystyle x^{\frac{1}{5}}-x^5=0$

$\displaystyle x^{\frac{1}{5}}\left(1-x^{\frac{4}{5}} \right)=0$

We can see then:

$x=0,\,1$

Finally, we sum up all the shells by integrating:

$\displaystyle V=2\pi\int_0^1 x^{\frac{6}{5}}-x^6\,dx=2\pi\left[\frac{5}{11}x^{\frac{11}{5}}-\frac{1}{7}x^7 \right]_0^1=2\pi\left(\frac{5}{11}-\frac{1}{7} \right)=\frac{48\pi}{77}$
 

Attachments

  • rickkyredu.jpg
    rickkyredu.jpg
    6.4 KB · Views: 89
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K