MHB Rickkyredu's question at Yahoo Answers (shell method for solid of revolution)

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Shell method calculus?

Use the Shell Method to compute the volume of the solid obtained by rotating the region in the first quadrant enclosed by the graphs of the functions y=x^{5} and y=sqrt[5]{x} about the y-axis.

Here is a link to the question:

Shell method calculus? - Yahoo! Answers

I have posted a link there to this topic so the OP may find my response.
 
Mathematics news on Phys.org
Hello Rickkyredu,

The first thing I like to do in these problems, is look at a graph of the region to be rotated:

View attachment 607

Next, I like to compute the volume of 1 arbitrary shell:

$\displaystyle dV=2\pi rh\,dx$

where:

$\displaystyle r=x,\,h=x^{\frac{1}{5}}-x^5$

and so we have:

$\displaystyle dV=2\pi x\left(x^{\frac{1}{5}}-x^5 \right)\,dx=2\pi\left(x^{\frac{6}{5}}-x^6 \right)\,dx$

Next, we need to find the limits of integration, i.e., the $x$-cooridnates of the points of intersection for the two curves:

$\displaystyle x^{\frac{1}{5}}=x^5$

$\displaystyle x^{\frac{1}{5}}-x^5=0$

$\displaystyle x^{\frac{1}{5}}\left(1-x^{\frac{4}{5}} \right)=0$

We can see then:

$x=0,\,1$

Finally, we sum up all the shells by integrating:

$\displaystyle V=2\pi\int_0^1 x^{\frac{6}{5}}-x^6\,dx=2\pi\left[\frac{5}{11}x^{\frac{11}{5}}-\frac{1}{7}x^7 \right]_0^1=2\pi\left(\frac{5}{11}-\frac{1}{7} \right)=\frac{48\pi}{77}$
 

Attachments

  • rickkyredu.jpg
    rickkyredu.jpg
    6.4 KB · Views: 80
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top