Hi, maybe someone can help. When I think about it, I'm pretty sure that the following is true: Let c be a curve parametrized by [itex]t\in [a,b][/itex], let [itex]\sigma = \{t_0,...,t_N\}[/itex] be a partition of [a,b] and [itex]\delta_{\sigma}=\max_{0\leq k \leq N-1}(t_{k+1}-t_k)[/itex]. Also define [itex]\Delta t_k=t_{k+1}-t_k[/itex] Then,(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\int_a^b |\frac{dc}{dt}(t)|dt[/tex]

Proving this would also amount to proving

[tex]\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1} |\frac{dc}{dt}(t_k)|\Delta t_k[/tex]

Is there a way to do this using a finite succession of arguments?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Riemann sum of derivative (something like that)

**Physics Forums | Science Articles, Homework Help, Discussion**