Math Amateur
Gold Member
MHB
- 3,920
- 48
I am reading Stephen Lovett's book, "Abstract Algebra: Structures and Applications" and am currently focused on Chapter 5 ...
I need some help with Example 5.2.1 in Section 5.2: Rings Generated by Elements ...
View attachment 6407
In the Introduction to Section 5.2.1 (see text above) Lovett writes:
" ... ... $$R$$ denotes the smallest (by inclusion) subring of $$A$$ that contains both $$R$$ and $$S$$ ... ... "Then, a bit later, in Example 5.2.1 concerning the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ Lovett writes:" ... ... It is not hard to show that the set$$\{ \frac{k}{ 2^n} \ | \ k.n \in \mathbb{Z} \}$$is a subring of $$\mathbb{Q}$$. Hence, this set is precisely the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ ... ... ... "BUT ...
How has Lovett actually shown that the set $$\{ \frac{k}{ 2^n} \ | \ k,n \in \mathbb{Z} \}$$ as a subring of $$\mathbb{Q}$$ is actually (precisely in Lovett's words) the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ ... ... ?
... ... according to his introduction which I quoted Lovett says that the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ is the smallest (by inclusion) subring of $$\mathbb{Q}$$ that contains $$\mathbb{Z}$$ and $$\frac{1}{2}$$ ... ...Can someone please explain to me exactly how Lovett has demonstrated this ... ...
... and ... if Lovett has not clearly proved this can someone please demonstrate a proof ...Just one further clarification ... is Lovett here dealing with ring extensions ... ... ?
Hope someone can help ...
Peter
I need some help with Example 5.2.1 in Section 5.2: Rings Generated by Elements ...
View attachment 6407
In the Introduction to Section 5.2.1 (see text above) Lovett writes:
" ... ... $$R
How has Lovett actually shown that the set $$\{ \frac{k}{ 2^n} \ | \ k,n \in \mathbb{Z} \}$$ as a subring of $$\mathbb{Q}$$ is actually (precisely in Lovett's words) the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ ... ... ?
... ... according to his introduction which I quoted Lovett says that the ring $$\mathbb{Z} [ \frac{1}{2} ]$$ is the smallest (by inclusion) subring of $$\mathbb{Q}$$ that contains $$\mathbb{Z}$$ and $$\frac{1}{2}$$ ... ...Can someone please explain to me exactly how Lovett has demonstrated this ... ...
... and ... if Lovett has not clearly proved this can someone please demonstrate a proof ...Just one further clarification ... is Lovett here dealing with ring extensions ... ... ?
Hope someone can help ...
Peter