MHB Robin's question at Yahoo Answers regarding the osculating circle of a parabola

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Circle Parabola
Click For Summary
To find the center of the osculating circle for the parabola y=1/2*x^2 at the point (-1, 1/2), the radius of curvature is calculated as R(-1) = 2√2. The center lies along the normal line at the point, with the slope being the negative reciprocal of the tangent slope, resulting in the normal line equation y - 1/2 = x + 1. By applying the distance formula for the radius to this normal line, the coordinates of the center are derived as (1, 5/2). Thus, the center of the osculating circle is located at (1, 5/2).
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How to find the center of an osculating circle?


osculating circles of the parabola y=1/2*x^2 at (-1,1/2)
I got the radius to be 2^(3/2) which is right.
All I need to know is how to find the center.

I have posted a link there to this thread so the Op can view my work.
 
Mathematics news on Phys.org
Hello Robin,

For a curve in the plane expressed as a function $y(x)$ in Cartesian coordinates, the radius of curvature is given by:

$$R(x)=\left|\frac{\left(1+y'^2 \right)^{\frac{3}{2}}}{y''} \right|$$

We are given the curve:

$$y(x)=\frac{1}{2}x^2$$

Hence:

$$y'=x$$

$$y''=1$$

And so the radius of curvature for this function is given by:

$$R(x)=(1+x^2)^{\frac{3}{2}}$$

Hence:

$$R(-1)=2\sqrt{2}$$

Now, the center of the osculating circle will lie aline the normal line at the given point. The slope $m$ of this normal line is the negative multiplicative inverse of the slope of the tangent line. Thus:

$$m=-\frac{1}{\left.y'(-1) \right|_{x=-1}}=-\frac{1}{-1}=1$$

Thus, using the point-slope formula, the normal line is given by:

$$y-\frac{1}{2}=x+1$$

Now, the distance from the tangent point of the osculating circle and its center $\left(x_C,y_C \right)$ is the radius of curvature we found above, and so we may write:

$$\left(x_C+1 \right)^2+\left(y_C-\frac{1}{2} \right)^2=\left(2\sqrt{2} \right)^2$$

Since the center of the circle lies on the normal line we found, we have:

$$\left(x_C+1 \right)^2+\left(x_C+1 \right)^2=8$$

$$\left(x_C+1 \right)^2=4$$

$$x_C=-1\pm2$$

Since the curve is concave up, we take the root:

$$x_C=1\implies y_C=\frac{5}{2}$$

Thus, the center of the osculating circle at the given point is:

$$\left(x_C,y_C \right)=\left(1,\frac{5}{2} \right)$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K