Rod colliding with the ground (Special relativity question)

Click For Summary
SUMMARY

The discussion centers on the analysis of a rod colliding with the ground while moving vertically at speed u, and a particle moving horizontally at speed v. The participants explore the implications of special relativity, particularly Lorentz transformations, on the collision events of the rod's ends in different frames. Key calculations reveal that the rod does not hit the ground simultaneously in the particle's frame, leading to a derived angle θ' based on the velocities and Lorentz factors. The final expressions indicate that the horizontal distance between the ends of the rod is influenced by both the velocities and the Lorentz factor γ.

PREREQUISITES
  • Understanding of special relativity concepts, including Lorentz transformations.
  • Familiarity with the concept of simultaneity in different reference frames.
  • Knowledge of the Lorentz factor, γ, and its application in relativistic calculations.
  • Basic grasp of elastic collisions and their implications in physics.
NEXT STEPS
  • Study Lorentz transformations in detail, focusing on time dilation and length contraction.
  • Learn about the implications of simultaneity in special relativity, particularly in collision scenarios.
  • Explore the concept of elastic collisions in relativistic contexts, including energy conservation.
  • Investigate the mathematical derivations of angles in relativistic collisions and their physical interpretations.
USEFUL FOR

Physicists, students of relativity, and anyone interested in understanding the dynamics of objects in relativistic motion and collision scenarios.

LCSphysicist
Messages
644
Reaction score
163
Homework Statement
.
Relevant Equations
.
Ok, so basically: There is a frase with a particle moving horizontally with velocity v and a rod parallel to the ground, with rest length L, falling with speed u vertical constant. The rod bounces off on the ground. Describe what happens in the particle frame and find the angle the rod makes with the horizontal when it collides in this frame.

So i tried this:

The event A, the left corner of the rod hits the ground.
The event B, the right corner hits the ground.

In the ground frame, Ta=Tb=0. ##\Delta x = L/\gamma_u##

So, LT to the particle frame, we have $$|\Delta t'| = |\gamma_v \beta_v \Delta x|, |\Delta x'| = | \gamma_v \Delta x|$$
That is, the rod don't hit the ground simultaneously, the right corner will hit it with a difference of time ##|\Delta t'|##

So, when the left corner touches the ground, the time the right corner is elevated ##y' = u \Delta t' = u' \gamma_v \beta_v \Delta x##

Since u is perpendicular to v, u', the vertical velocity of the rod in the particle frame, is ##u' = u/\gamma_v##.

##y' = u '\Delta t' = (u/\gamma_v) \gamma_v \beta_v \Delta x = u\beta_v \Delta x ##

##tan\theta' = y'/\Delta x' = u\beta_v \Delta x/\Delta x' = u\beta_v / \gamma_v##

Ignore the units, i put c=1.
This is just wrong. Could you help me to solve the question?
 
Physics news on Phys.org
According to IFRs, the rod is horizontal, right up or left up in touching the ground. I do not find anything wrong with it.
 
Herculi said:
In the ground frame, Ta=Tb=0. ##\Delta x = L/\gamma_u##
In the ground frame, the rod is moving perpendicularly to its length. Should the rod be contracted in the ground frame?

Herculi said:
So, LT to the particle frame, we have $$|\Delta t'| = |\gamma_v \beta_v \Delta x|, |\Delta x'| = | \gamma_v \Delta x|$$
That is, the rod don't hit the ground simultaneously, the right corner will hit it with a difference of time ##|\Delta t'|##

So, when the left corner touches the ground, the time the right corner is elevated ##y' = u \Delta t' = u' \gamma_v \beta_v \Delta x##
Ok. In the middle expression, ##u## should have a prime. But you have it correct in the final expression.

Herculi said:
Since u is perpendicular to v, u', the vertical velocity of the rod in the particle frame, is ##u' = u/\gamma_v##.

##y' = u '\Delta t' = (u/\gamma_v) \gamma_v \beta_v \Delta x = u\beta_v \Delta x ##
Ok

Herculi said:
##tan\theta' = y'/\Delta x' = u\beta_v \Delta x/\Delta x' = u\beta_v / \gamma_v##
Here, ##\Delta x'## should be the (simultaneous) horizontal distance between the left and right ends of the rod as seen in the primed frame. This is not the same as the horizontal distance between events A and B as seen in the primed frame. In the primed frame, A and B do not occur simultaneously. So, the rod moves horizontally during the time between the events in the primed frame.
 
  • Like
Likes   Reactions: PeroK
TSny said:
In the ground frame, the rod is moving perpendicularly to its length. Should the rod be contracted in the ground frame?Ok. In the middle expression, ##u## should have a prime. But you have it correct in the final expression.OkHere, ##\Delta x'## should be the (simultaneous) horizontal distance between the left and right ends of the rod as seen in the primed frame. This is not the same as the horizontal distance between events A and B as seen in the primed frame. In the primed frame, A and B do not occur simultaneously. So, the rod moves horizontally during the time between the events in the primed frame.
Thank you by the reply. So considering the last paragraph, i think we could say that:
The horizontal distance between the ends of the rod will be equal to $$\Delta S = \Delta X' - v\Delta t' = \gamma_v \Delta X - v \gamma_v \beta_v \Delta X$$

So that $$tan = u\beta_v \Delta X/(\Delta X (\gamma_v - v \gamma_v \beta_v)) = u v / (\gamma_v - v^2 \gamma_v ) = uv \gamma_v$$

So, is that right? I was expecting something involving ##gamma_u## too. At least to me, it is quite amazing it does not appear here.
 
Herculi said:
The horizontal distance between the ends of the rod will be equal to $$\Delta S = \Delta X' - v\Delta t' = \gamma_v \Delta X - v \gamma_v \beta_v \Delta X$$

So that $$tan = u\beta_v \Delta X/(\Delta X (\gamma_v - v \gamma_v \beta_v)) = u v / (\gamma_v - v^2 \gamma_v ) = uv \gamma_v$$
That looks right.

It's interesting to consider the shape of the rod in the primed frame at times between the two events B and A for the case where the rod bounces elastically off the ground in the ground frame.
 
Last edited:
  • Like
Likes   Reactions: LCSphysicist

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
11
Views
3K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K