1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Rottor of a vector in a simple way

  1. Aug 13, 2009 #1



    so its [tex]F=\frac{r}{|r|}[/tex]

    i need to prove that F is a conservative field
    where (x,y,z) differs (0,0,0)
    so i need to show that rot f is 0
    but for rottor i need a determinant
    is there a way to do a rot on simpler way?
  2. jcsd
  3. Aug 13, 2009 #2


    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    You have a radial vector. Look up "curl in spherical coordinates" and apply it.
  4. Aug 13, 2009 #3


    User Avatar
    Homework Helper
    Gold Member

    The determinant method is usually the simplest way. In Cartesian coordinates, it's

    [tex]\text{rot}\textbf{F}=\begin{vmatrix}\hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ F_x & F_y & F_z \end{vmatrix}=\begin{vmatrix}\hat{x} & \hat{y} & \hat{z} \\ \partial_x & \partial_y & \partial_z \\ \frac{x}{\sqrt{x^2+y^2+z^2}} & \frac{y}{\sqrt{x^2+y^2+z^2}} & \frac{z}{\sqrt{x^2+y^2+z^2}} \end{vmatrix}[/tex]

    But since [itex]\textbf{F}=\frac{\textbf{r}}{r}=\textbf{e}_r[/itex], it is probably best to use spherical coordinates:

    [tex]\text{rot}\textbf{F}=\begin{vmatrix}\textbf{e}_{r} & r\textbf{e}_{\theta} & r\sin\theta\textbf{e}_{\phi} \\ \partial_r & \partial_{\theta} & \partial_{\phi} \\ F_r & r F_{\theta} & r\sin\theta F_{\phi} \end{vmatrix}=\begin{vmatrix}\textbf{e}_{r} & r\textbf{e}_{\theta} & r\sin\theta\textbf{e}_{\phi} \\ \partial_r & \partial_{\theta} & \partial_{\phi} \\ 1 & 0 & 0 \end{vmatrix}[/tex]
  5. Aug 13, 2009 #4
    wow i how you came up with this kind of determinant
    i am use the the first kind
  6. Aug 13, 2009 #5


    User Avatar
    Homework Helper
    Gold Member

    In any 3D Curvilinear coordinate system (u,v,w), the rotation (or 'curl') is given by

    [tex]\text{rot}\textbf{F}=\begin{vmatrix}h_u\textbf{e}_{u} & h_v\textbf{e}_{v} & h_w\textbf{e}_{w} \\ \partial_u & \partial_v & \partial_w \\ h_u F_u & h_v F_{v} & h_w F_w \end{vmatrix}[/tex]

    where [itex]\textbf{e}_u[/itex], [itex]\textbf{e}_v[/itex], and [itex]\textbf{e}_w[/itex] are unit vectors that point in the direction of increasing [itex]u[/itex], [itex]v[/itex] and [itex]w[/itex] respectively, and [itex]h_u[/itex], [itex]h_v[/itex], and [itex]h_w[/itex] are scale factors given by

    [tex]h_u\equiv \left| \frac{\partial \textbf{r}}{\partial u} \right|[/tex]

    [tex]h_v\equiv \left| \frac{\partial \textbf{r}}{\partial v} \right|[/tex]


    [tex]h_w\equiv \left| \frac{\partial \textbf{r}}{\partial w} \right|[/tex]

    This is derived in most multivariable calculus textbooks.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook