- #1
winnie_d_poop
- 2
- 1
- Homework Statement
- Given a constant direction, take the time derivative of both sides of the position vector and show that they are equal
- Relevant Equations
- ##\dot{\vec{r}}=\dot{x}\hat{i}+\dot{y}\hat{j}+\dot{z}\hat{k}##
##\vec{r}=r\hat{r}=x\hat{i}+y\hat{j}+z\hat{k}##
##r=\sqrt{x^2+y^2+z^2}##
##\hat{r}=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}##
##\dot{r}=\frac{\dot{x}x+\dot{y}y+\dot{z}z}{\sqrt{x^2+y^2+z^2}}##
1.)##\dot{\vec{r}}=\dot{x}\hat{i}+\dot{y}\hat{j}+\dot{z}\hat{k}=\dot{r}\hat{r}## since the unit vector is constant
2.) ##\dot{r}\hat{r}=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}\frac{\dot{x}x+\dot{y}y+\dot{z}z}{\sqrt{x^2+y^2+z^2}}##
3.)##\dot{x}\hat{i}+\dot{y}\hat{j}+\dot{z}\hat{k}=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}\frac{\dot{x}x+\dot{y}y+\dot{z}z}{\sqrt{x^2+y^2+z^2}}##
This is where I'm stuck. How do I get both sides to be equal?
EDIT: I made it through the problem but did I do it right?
2.) ##\dot{r}\hat{r}=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}\frac{\dot{x}x+\dot{y}y+\dot{z}z}{\sqrt{x^2+y^2+z^2}}##
3.)##\dot{x}\hat{i}+\dot{y}\hat{j}+\dot{z}\hat{k}=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}\frac{\dot{x}x+\dot{y}y+\dot{z}z}{\sqrt{x^2+y^2+z^2}}##
This is where I'm stuck. How do I get both sides to be equal?
EDIT: I made it through the problem but did I do it right?
Attachments
Last edited: