MHB Sam m's question at Yahoo Answers regarding a solid of revolution

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Revolution Solid
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Find the volume of the solid generated by revolving around the line x = 4?

given the region bounded by y=x^2+2, y=1, x=0, x=1?

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello sam m,

Let's try the shell method first. The volume of an arbitrary shell is:

$$dV=2\pi rh\,dx$$

where:

$$r=4-x$$

$$h=x^2+2-1=x^2+1$$

And so we have:

$$dV=2\pi(4-x)\left(x^2+1 \right)\,dx=2\pi\left(-x^3+4x^2-x+4 \right)\,dx$$

Hence, summing the shells, we find:

$$V=2\pi\int_0^1 -x^3+4x^2-x+4\,dx$$

Application of the FTOC yields:

$$V=2\pi\left[-\frac{1}{4}x^4+\frac{4}{3}x^3-\frac{1}{2}x^2+4x \right]_0^1=2\pi\left(-\frac{1}{4}+\frac{4}{3}-\frac{1}{2}+4 \right)=\frac{55}{6}\pi$$

Now, we can check our answer by using the washer method. And we can ease our calculations by observing that for $1\le y\le2$ the inner and outer radii are constant, so we have a washer whose thickness is 1 unit and its ourter radius is 4and its inner radius is 3, so this part of the volume is:

$$V_1=\pi\left(4^2-3^2 \right)(1)=7\pi$$

Now, for $2\le y\le3$ we find the outer radius varies, and so the volume of an arbitrary washer is:

$$dV_2=\pi\left(R^2-r^2 \right)\,dy$$

where:

$$R=4-x=4-\sqrt{y-2}$$

$$r=3$$

And so we have:

$$dV_2=\pi\left(\left(4-\sqrt{y-2} \right)^2-3^2 \right)\,dy=\pi\left(y-8\sqrt{y-2}+5 \right)\,dy$$

Adding the washers, we obtain:

$$V_2=\pi\int_2^3 y-8\sqrt{y-2}+5\,dy$$

Application of the FTOC yields:

$$V_2=\pi\left[\frac{1}{2}y^2-\frac{16}{3}(y-2)^{\frac{3}{2}}+5y \right]_2^3=\pi\left(\left(\frac{9}{2}-\frac{16}{3}+15 \right)-\left(2+10 \right) \right)=\pi\left(\frac{85}{6}-12 \right)=\frac{13}{6}\pi$$

Adding the two volumes to get the total:

$$V=V_1+V_2=7\pi+\frac{13}{6}\pi=\frac{55}{6}\pi$$

And so, this checks with the shell method. Thus we find the volume of the solid of revolution in units cubed is:

$$V=\frac{55}{6}\pi$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top