A Scalar decay to one-loop in Yukawa interaction

Gaussian97
Homework Helper
Messages
683
Reaction score
412
TL;DR Summary
One-loop correction for $\phi \to e^+e^-$ under a Yukawa interaction seems to vanish trivially.
I am trying to calculate the amplitude for a decay ##\phi \to e^+e^-## under a Yukawa interaction ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## to one-loop order (with massless fermions for simplicity).

If I'm not wrong, there are 4 diagrams that contribute to 1 loop, three diagrams involving self-energy corrections (i.e. inserting a loop into the external lines) and an extra diagram with vertex correction (a ##\phi## field exchanged by ##e^+## and ##e^-##).

I have no problem calculating the integrals and using counterterms to cancel the infinities that arise, but I'm not sure if the conditions I use for renormalization are correct. Following the example of QED, to apply on-shell renormalization I used the following conditions;

The scalar propagator in the limit ##p^2 \to M^2## should be ##\frac{i}{p^2-M^2}##

The fermion propagator in the limit ##\not{\!p} \to 0## should be ##\frac{i}{\not{p}}##

The vertex function in the limit ##p^2 \to M^2## should be ##-ig##. (##p## is the momentum of the scalar particle.)

Now, because the self-energy diagrams are all in external legs, the first two corrections mean that those diagrams vanish.
But the third condition tells that the vertex correction must also vanish when the scalar particle is on-shell (as in my diagram). Therefore all the diagrams here vanish trivially due to renormalization conditions.

Is this analysis correct? Or did I make some mistake in the renormalization part?
 
Last edited:
Physics news on Phys.org
Gaussian97 said:
Yukawa interaction,,,with massless fermions
By doing so, didn't you just set the coupling to zero?
 
Vanadium 50 said:
By doing so, didn't you just set the coupling to zero?
Mmm... Not sure I follow you, maybe I'm saying something stupid. But how is the coupling constant ##g## in ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## related to the mass of the fermions?
 
I'm sorry. I saw "Yukawa" and my brain immediately jumped to "Higgs Yukawa".
 
Oh, okay I understand now the confusion.
I'm doing this simply to practice (most textbooks deal with $\phi^4$ and QED), so I thought that Yukawa was a simple enough example to try to do it by myself.
There is no intention of this being applicable in the Standard Model or anything like that, just to have fun.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top