A Scalar decay to one-loop in Yukawa interaction

Click For Summary
The discussion focuses on calculating the amplitude for the decay process ##\phi \to e^+e^-## using a Yukawa interaction at one-loop order, highlighting the four contributing diagrams. The user successfully computes integrals and applies counterterms but questions the correctness of their renormalization conditions, particularly regarding the scalar and fermion propagators and the vertex function. They note that the self-energy diagrams vanish due to the conditions applied, leading to concerns that all diagrams may trivially vanish. Clarification arises regarding the relationship between the coupling constant ##g## and fermion mass, with the user emphasizing that their exploration is for practice rather than application in the Standard Model. The analysis raises important considerations about the implications of renormalization in Yukawa interactions with massless fermions.
Gaussian97
Homework Helper
Messages
683
Reaction score
412
TL;DR
One-loop correction for $\phi \to e^+e^-$ under a Yukawa interaction seems to vanish trivially.
I am trying to calculate the amplitude for a decay ##\phi \to e^+e^-## under a Yukawa interaction ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## to one-loop order (with massless fermions for simplicity).

If I'm not wrong, there are 4 diagrams that contribute to 1 loop, three diagrams involving self-energy corrections (i.e. inserting a loop into the external lines) and an extra diagram with vertex correction (a ##\phi## field exchanged by ##e^+## and ##e^-##).

I have no problem calculating the integrals and using counterterms to cancel the infinities that arise, but I'm not sure if the conditions I use for renormalization are correct. Following the example of QED, to apply on-shell renormalization I used the following conditions;

The scalar propagator in the limit ##p^2 \to M^2## should be ##\frac{i}{p^2-M^2}##

The fermion propagator in the limit ##\not{\!p} \to 0## should be ##\frac{i}{\not{p}}##

The vertex function in the limit ##p^2 \to M^2## should be ##-ig##. (##p## is the momentum of the scalar particle.)

Now, because the self-energy diagrams are all in external legs, the first two corrections mean that those diagrams vanish.
But the third condition tells that the vertex correction must also vanish when the scalar particle is on-shell (as in my diagram). Therefore all the diagrams here vanish trivially due to renormalization conditions.

Is this analysis correct? Or did I make some mistake in the renormalization part?
 
Last edited:
Physics news on Phys.org
Gaussian97 said:
Yukawa interaction,,,with massless fermions
By doing so, didn't you just set the coupling to zero?
 
Vanadium 50 said:
By doing so, didn't you just set the coupling to zero?
Mmm... Not sure I follow you, maybe I'm saying something stupid. But how is the coupling constant ##g## in ##\mathcal{L}_I = -g\phi \bar{\psi}\psi## related to the mass of the fermions?
 
I'm sorry. I saw "Yukawa" and my brain immediately jumped to "Higgs Yukawa".
 
Oh, okay I understand now the confusion.
I'm doing this simply to practice (most textbooks deal with $\phi^4$ and QED), so I thought that Yukawa was a simple enough example to try to do it by myself.
There is no intention of this being applicable in the Standard Model or anything like that, just to have fun.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...