Scalar triple product invariance under circular shift proof

pastoreerrante
Messages
2
Reaction score
0

Homework Statement


Prove that for any three vectors ##\hat a, \hat b ## and ## \hat c##, ##\hat a \cdot (\hat b \times \hat c)## = ##(\hat a \times \hat b) \cdot \hat c ##

Homework Equations


[/B]
## \hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = (1)(1)\cos(0) = 1 ##
## \hat i \cdot \hat j = \hat i \cdot \hat k = \hat j \cdot \hat k = (1)(1)\cos(90) = 0 ##

The Attempt at a Solution



I tried this procedure:

1. calculate the inner cross product ##(\hat b \times \hat c)## and ##(\hat a \times \hat b) ##
2. dotting the resulting vector with the third remaining vector (## \hat a ## and ## \hat c ## respectively)
3. I expected that the resulting vectors were identical in terms of their components, but they aren't.


These are the calculations for the LHS of my thesis:

1. ##(\hat b \times \hat c) ##= ##(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k##

2. dotting with ## \hat a ##:

## (a_x \hat i + a_y \hat j + a_z \hat k)## ## \cdot [(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k]## =
##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##

Now the calculations for the RHS of my thesis
:

1. ##(\hat a \times \hat b) ##= ##(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k##

2. dotting with ## \hat c ##:

## (c_x \hat i + c_y \hat j + c_z \hat k)## ## \cdot [(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k]## =
##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##


Clearly,

##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##

is not equal to:

##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##

What am I missing here?

Thank you in advance
 
Physics news on Phys.org
You can never get a vector as a result from a scalar product. Your result should be a number.
 
Thank you, I got it! If I don't consider the results as vectors but as normal algebraic expressions, they are perfectly equivalent.
 
pastoreerrante said:
If I don't consider the results as vectors but as normal algebraic expressions, they are perfectly equivalent.

This rings a warning bell for me. It is not a matter of considering the result as a vector or not, the result of the triple product is a scalar and not a vector.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
12
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 25 ·
Replies
25
Views
2K
Replies
8
Views
2K
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K