MHB Secant and Tangent Angles in Circles, finding an arc length.

AI Thread Summary
The discussion focuses on calculating the measures of angles related to secants and tangents in a circle. The user initially arrived at an incorrect arc length of 138.17 and sought clarification on the angles formed by tangents at points P and R. It was established that both angles CPQ and CRQ are 90 degrees due to the properties of tangents. The interior angles of the quadrilateral formed were analyzed, leading to the conclusion that the measure of arc PR is 100 degrees. This illustrates the relationship between angles and arc lengths in circle geometry.
Cj111
Messages
2
Reaction score
0
View attachment 8161

I got 138.17, but that isn't correct. I don't know how to do it, since the only way I thought, gave me the wrong answer. Can anyone help?
 

Attachments

  • Capture.PNG
    Capture.PNG
    3.6 KB · Views: 117
Mathematics news on Phys.org
I would call point $C$ the center of the circle. So, what must the measures of $$\angle CPQ$$ and $$\angle CRQ$$ be?
 
To follow up, since $$\overline{QP}$$ and $$\overline{QR}$$ are tangent to the circle, we must have $$\angle CPQ=\angle CRQ=90^{\circ}$$. Since the sum of the interior angles of a quadrilateral is $360^{\circ}$, it follows then that:

$$100x+81x-1=180\implies x=1$$

And hence, $$\overset{\frown}{PR}=100^{\circ}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top