Second bright fringe in Young's Experiment

  • Thread starter Thread starter Andrew Tom
  • Start date Start date
  • Tags Tags
    Experiment Fringe
Click For Summary
SUMMARY

The discussion centers on calculating the distance \(D\) in Young's double slit experiment, where a light beam of wavelength \(589nm\) passes through slits separated by \(0.2mm\). The second bright fringe is located \(6mm\) from the central maximum. Using the formula \(D=\frac{xd}{n\lambda}\), the correct value of \(D\) is determined to be \(1.01m\) when \(n=2\), as the central maximum is counted as \(n=0\). The initial calculation of \(D=2.04m\) using \(n=1\) is incorrect due to miscounting the fringe order.

PREREQUISITES
  • Understanding of Young's double slit experiment
  • Familiarity with interference patterns and fringe counting
  • Knowledge of the formula \(D=\frac{xd}{n\lambda}\)
  • Basic concepts of wavelength and slit separation
NEXT STEPS
  • Study the principles of wave interference in detail
  • Learn about fringe spacing calculations in Young's experiment
  • Explore variations of Young's experiment with different wavelengths
  • Investigate the impact of slit separation on interference patterns
USEFUL FOR

Students of physics, educators teaching wave optics, and anyone interested in understanding the principles of light interference and fringe calculations in experiments.

Andrew Tom
Messages
14
Reaction score
0
Homework Statement
Second bright fringe in Young's Experiment
Relevant Equations
##n\lambda = \frac{xd}{D}##
In Young's double split experiment, a narrow beam of light of wavelength ##589nm## passes through two slits to form an interference pattern on a screen which is a perpendicular distance of ##D## metres away from the slits. The slit separation is ##0.2mm## and the second bright fringe is ##6mm## from the central maximum. Find ##D##.

The formula given in the book is that the path difference is ##\frac{xd}{D}## where ##x## is the distance from the central maximum, ##d## is slit separation and ##D## is distance of screen from slits. So for bright fringes, ##n\lambda = \frac{xd}{D}## or ##D=\frac{xd}{n\lambda}##. So for the second bright fringe, ##n=1## (since the first one is the central maximum at ##n=0##). Hence ##D=\frac{xd}{\lambda}## which gives ##D=2.04m##. However this is different from the answer at the back of the book.
 
Physics news on Phys.org
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
 
kuruman said:
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book, however I can't see what I am doing wrong.
 
Andrew Tom said:
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book.
D=1.01 m is the correct answer that you get when ##n=2##. The formula is ##D=\frac{xd}{n\lambda}##. With ##n=1##, you got ##D=2.04## m; with ##n=2##, you should get half as much because ##n## is in the denominator.
 

Similar threads

Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 7 ·
Replies
7
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
3
Views
6K