Second bright fringe in Young's Experiment

  • Thread starter Thread starter Andrew Tom
  • Start date Start date
  • Tags Tags
    Experiment Fringe
AI Thread Summary
In Young's double-slit experiment, a light beam of wavelength 589 nm creates an interference pattern with a slit separation of 0.2 mm. The second bright fringe appears 6 mm from the central maximum, leading to calculations for the distance D from the slits to the screen. The correct formula for D is D = (xd)/(nλ), where n is the fringe number. For the second bright fringe, n should be 2, resulting in D = 1.01 m, which aligns with the book's answer. Misunderstandings arose from incorrectly counting the central maximum as n=1 instead of n=0.
Andrew Tom
Messages
14
Reaction score
0
Homework Statement
Second bright fringe in Young's Experiment
Relevant Equations
##n\lambda = \frac{xd}{D}##
In Young's double split experiment, a narrow beam of light of wavelength ##589nm## passes through two slits to form an interference pattern on a screen which is a perpendicular distance of ##D## metres away from the slits. The slit separation is ##0.2mm## and the second bright fringe is ##6mm## from the central maximum. Find ##D##.

The formula given in the book is that the path difference is ##\frac{xd}{D}## where ##x## is the distance from the central maximum, ##d## is slit separation and ##D## is distance of screen from slits. So for bright fringes, ##n\lambda = \frac{xd}{D}## or ##D=\frac{xd}{n\lambda}##. So for the second bright fringe, ##n=1## (since the first one is the central maximum at ##n=0##). Hence ##D=\frac{xd}{\lambda}## which gives ##D=2.04m##. However this is different from the answer at the back of the book.
 
Physics news on Phys.org
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
 
kuruman said:
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book, however I can't see what I am doing wrong.
 
Andrew Tom said:
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book.
D=1.01 m is the correct answer that you get when ##n=2##. The formula is ##D=\frac{xd}{n\lambda}##. With ##n=1##, you got ##D=2.04## m; with ##n=2##, you should get half as much because ##n## is in the denominator.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top