Second bright fringe in Young's Experiment

  • Thread starter Thread starter Andrew Tom
  • Start date Start date
  • Tags Tags
    Experiment Fringe
AI Thread Summary
In Young's double-slit experiment, a light beam of wavelength 589 nm creates an interference pattern with a slit separation of 0.2 mm. The second bright fringe appears 6 mm from the central maximum, leading to calculations for the distance D from the slits to the screen. The correct formula for D is D = (xd)/(nλ), where n is the fringe number. For the second bright fringe, n should be 2, resulting in D = 1.01 m, which aligns with the book's answer. Misunderstandings arose from incorrectly counting the central maximum as n=1 instead of n=0.
Andrew Tom
Messages
14
Reaction score
0
Homework Statement
Second bright fringe in Young's Experiment
Relevant Equations
##n\lambda = \frac{xd}{D}##
In Young's double split experiment, a narrow beam of light of wavelength ##589nm## passes through two slits to form an interference pattern on a screen which is a perpendicular distance of ##D## metres away from the slits. The slit separation is ##0.2mm## and the second bright fringe is ##6mm## from the central maximum. Find ##D##.

The formula given in the book is that the path difference is ##\frac{xd}{D}## where ##x## is the distance from the central maximum, ##d## is slit separation and ##D## is distance of screen from slits. So for bright fringes, ##n\lambda = \frac{xd}{D}## or ##D=\frac{xd}{n\lambda}##. So for the second bright fringe, ##n=1## (since the first one is the central maximum at ##n=0##). Hence ##D=\frac{xd}{\lambda}## which gives ##D=2.04m##. However this is different from the answer at the back of the book.
 
Physics news on Phys.org
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
 
kuruman said:
The proper way to count fringes is by considering the central maximum to be the zeroth maximum. When interference is constructive and you divide the path length difference from the slits by the wavelength, you get an integer. This integer is ##n## which is zero at the central maximum because the path lengths are equal. Thus the counting is
Central maximum ##n = 0##
First two maxima ##n = ± 1##
Second two maxima ##n = ± 2##
##\dots##

I think you should use ##n=2##.
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book, however I can't see what I am doing wrong.
 
Andrew Tom said:
Thanks for your reply. Unfortunately this also gives a wrong answer (according to book) of D=1.01m.

There is a similar question which I am also getting the wrong answer for so I don't think it is a mistake in the book.
D=1.01 m is the correct answer that you get when ##n=2##. The formula is ##D=\frac{xd}{n\lambda}##. With ##n=1##, you got ##D=2.04## m; with ##n=2##, you should get half as much because ##n## is in the denominator.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top