MHB Second mean value theorem in Bonnet's form

Suvadip
Messages
68
Reaction score
0
Using second mean value theorem in Bonnet's form show that there exists a
$$p $$in $$[a,b]$$ such that
$$\int_a^b e^{-x}cos x dx =sin ~p$$

I know the theorem but how to show this using that theorem .
 
Physics news on Phys.org
We can solve this by using Mean Value Theorem for Integrals in Bonnet's Form. Let f(x) = e^{-x}cos x, a = 0 and b = p.By the Mean Value Theorem for Integrals in Bonnet's Form, there exists c ∈ (0, p) such that\int_0^p e^{-x}cos x dx = f(c) (p - 0) = e^{-c}cos c (p - 0) = sin p Therefore, there exists c ∈ (0, p) such that \int_0^p e^{-x}cos x dx = sin p
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top