MHB Self-adjoint operator (Bens question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Operator
Click For Summary
To determine if the linear map T represented by the matrix is self-adjoint when the basis E is not orthonormal, one must consider the Gram matrix G associated with the inner product defined by E. The condition for T to be self-adjoint is that the equation A^T G = G A holds true, where A is the matrix of T. If E were orthonormal, the condition simplifies to A being symmetric, or A^T = A. The discussion emphasizes the importance of the inner product's expression and the role of the Gram matrix in establishing self-adjointness. Understanding these concepts is crucial for analyzing linear maps in non-orthonormal bases.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Self-adjoint operator (Ben's question at Yahoo! Answers)

Here is the question:

I have matrix that represent T:V -> V (linear map over $\mathbb{R}$) according to basis $E$.

E is not an orthonormal set.

how can I know if this T is self-adjoin ?

I know that if E was orthonormal basis we would take the transpose matrix.

but what about here ?

the matrix is :

1 2
2 1

Here is a link to the question:

Self-adjoint and properties? - Yahoo! Answers


I have posted a link there to this topic so the OP can find my response.
 
Last edited:
Mathematics news on Phys.org
Hello Ben,

We need the expression of the inner product. Suppose $G$ is the Gram matrix of the inner product with respect to $E$ and $A$ is the matrix of $T$ with respect to $E$. Denote $X,Y$ the coordinates of $x,y$ respectively with respect to $E$. Then,

$$T\mbox{ is self-adjoint}\Leftrightarrow\; <T(x),y>=<x,T(y)>\quad \forall x\forall y\in V$$
We can express
$$<T(x),y>=(AX)^TGY=X^TA^TGY\\<x,T(y)>=X^TG(AY)=X^TGAY$$ Then, $$X^TA^TGY=X^TGAY\Leftrightarrow X^T(A^TG-GA)Y=0$$ This happens for all $X,Y$ if and only if $A^TG=GA$. So, $$\boxed{T\mbox{ is self-adjoint}\Leftrightarrow A^TG=GA}$$ Particular case: If $E$ is orthonormal then $G=I$, so $T$ is self-adjoint if and only if $A^T=A$ (i.e. $A$ is symmetric).
 
Fernando Revilla said:
$$T\mbox{ is self-adjoint}\Leftrightarrow\; <T(x),y>=<x,T(y)>\quad \forall x\forall y\in V$$

You can use the \langle and \rangle commands in $\LaTeX$ to get better-looking inner products:

$$\langle T(x),y \rangle = \langle x,T(y) \rangle \quad \forall x,y \in V.$$
 
Ackbach said:
You can use the \langle and \rangle commands in $\LaTeX$ to get better-looking inner products:

Thanks, I knew those commads but for me is better-looking < and >. Only a question of particular taste. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 57 ·
2
Replies
57
Views
6K