Separation of Variables, but not equal to constant

Click For Summary
SUMMARY

The discussion centers on the separation of variables in the context of a partial differential equation (PDE) given by $$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$ where $$q = x f(t)$$. Participants debate whether the equation can be separated into $$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$, emphasizing that $$\frac{\partial q}{\partial t}$$ must be constant for the right-hand side to depend solely on $$q$$. The conclusion is that since $$q$$ is a function of time, the right-hand side still depends on time, leading to $$LHS = RHS = g(t)$$ rather than a constant.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with the method of separation of variables
  • Knowledge of variable reparameterization in mathematical contexts
  • Basic calculus, particularly differentiation with respect to multiple variables
NEXT STEPS
  • Study the method of separation of variables in depth, focusing on its application in PDEs.
  • Learn about variable reparameterization techniques and their implications in differential equations.
  • Investigate the role of constant terms in PDEs and how they affect separability.
  • Review O. Hamidi's research paper for insights on alternative methods of variable separation.
USEFUL FOR

Mathematicians, physicists, and engineering students interested in solving partial differential equations and understanding the implications of variable separation techniques.

Foracle
Messages
29
Reaction score
8
TL;DR
Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?
Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?
 
Last edited:
Physics news on Phys.org
Foracle said:
Summary:: Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?

Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

If by \dfrac{\partial}{\partial t} you mean differentiation with respect to t with q held constant, then by definition <br /> \frac{\partial q}{\partial t} = 0 and Q depends on q alone.

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?

You need to provide more context. Are you changing variables from (x,t) to (q = xf(t),t)? If so, differentiation with respect to t with x held constant is not the same thing as differentiation with respect to t with q held constant, and you need to be clear which of the two you mean when you write \dfrac{\partial}{\partial t}.
 
pasmith said:
Are you changing variables from (x,t) to (q=xf(t),t)?
Yes, I am doing that.
pasmith said:
you need to be clear which of the two you mean when you write ##\frac{∂}{∂t}##
When I do ##\frac{\partial u(q,t)}{\partial t}##, I am not holding anything constant. So
$$\frac{\partial }{\partial t} = \frac{\partial q}{\partial t} \frac{\partial}{\partial q} + \frac{\partial}{\partial t}$$
The ##\frac{\partial}{\partial t}## on the 2nd term of the RHS holds q constant.
 
I have another question that is kind of related.
Untitled.png

I am currently studying this research paper by O. Hamidi. What bothers me is in the equation (5), why did he choose to write ##\tau (x,t) = G(x) + K(t)## instead of the usual separation of variables ##\tau (x,t) = G(x)K(t)##?
Both substitutions give different solution, and both methods seem good to me. Why do people use one over the other?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
653
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K