Separation of Variables, but not equal to constant

Click For Summary

Discussion Overview

The discussion revolves around the separation of variables in a partial differential equation (PDE) involving two variables, q and t, where q is a reparameterization of position x. Participants explore the implications of variable separation, particularly when the reparameterization introduces dependencies on time.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents a PDE and applies separation of variables, leading to a manipulation that suggests both sides depend on time, questioning if they can be equated to a function of time g(t).
  • Another participant clarifies that if differentiation with respect to t is done while holding q constant, then the term involving q should not contribute to the time dependence, leading to a different interpretation of the separation.
  • There is a discussion about the necessity of having ##\frac{\partial q}{\partial t}## as constant for the equation to be separable, with some participants arguing that since q depends on time, the right-hand side still retains time dependence.
  • A separate question is raised regarding a research paper's choice of separation form, questioning why a sum of functions is used instead of the typical product form in separation of variables, noting that both methods yield different solutions.

Areas of Agreement / Disagreement

Participants express differing views on the implications of variable separation and the conditions under which the PDE can be considered separable. There is no consensus on whether the right-hand side can be treated as independent of time when q is reparameterized.

Contextual Notes

Participants highlight the importance of clarifying which variables are held constant during differentiation, as this affects the interpretation of the PDE. The discussion also notes that the choice of separation method can lead to different solutions, indicating a lack of a universally accepted approach.

Who May Find This Useful

This discussion may be of interest to students and researchers studying partial differential equations, variable separation techniques, and those exploring different methods of solving PDEs in mathematical physics.

Foracle
Messages
29
Reaction score
8
TL;DR
Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?
Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?
 
Last edited:
Physics news on Phys.org
Foracle said:
Summary:: Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?

Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

If by \dfrac{\partial}{\partial t} you mean differentiation with respect to t with q held constant, then by definition <br /> \frac{\partial q}{\partial t} = 0 and Q depends on q alone.

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?

You need to provide more context. Are you changing variables from (x,t) to (q = xf(t),t)? If so, differentiation with respect to t with x held constant is not the same thing as differentiation with respect to t with q held constant, and you need to be clear which of the two you mean when you write \dfrac{\partial}{\partial t}.
 
pasmith said:
Are you changing variables from (x,t) to (q=xf(t),t)?
Yes, I am doing that.
pasmith said:
you need to be clear which of the two you mean when you write ##\frac{∂}{∂t}##
When I do ##\frac{\partial u(q,t)}{\partial t}##, I am not holding anything constant. So
$$\frac{\partial }{\partial t} = \frac{\partial q}{\partial t} \frac{\partial}{\partial q} + \frac{\partial}{\partial t}$$
The ##\frac{\partial}{\partial t}## on the 2nd term of the RHS holds q constant.
 
I have another question that is kind of related.
Untitled.png

I am currently studying this research paper by O. Hamidi. What bothers me is in the equation (5), why did he choose to write ##\tau (x,t) = G(x) + K(t)## instead of the usual separation of variables ##\tau (x,t) = G(x)K(t)##?
Both substitutions give different solution, and both methods seem good to me. Why do people use one over the other?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
745
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K