I Separation of Variables, but not equal to constant

Foracle
Messages
29
Reaction score
8
TL;DR Summary
Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?
Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?
 
Last edited:
Physics news on Phys.org
Foracle said:
Summary:: Is the following PDE separable
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where ##\frac{\partial q}{\partial t}## can depend on ##q## and ##t##?

Suppose I have 2 variables q and t (time), where q is some reparameterization of x (position) : ##x \to q = x f(t)##.

Suppose I have a partial differential equation :
$$\frac{\partial u(q,t)}{\partial t} = k \frac{\partial u(q,t)}{\partial q}$$
where k = constant
Then I do a separation of variables ## u(q,t) = Q(q)T(t) ##
The differential equation becomes (after some manipulation):
$$\frac{1}{T} \frac{\partial T}{\partial t} = k \frac{1}{Q} \frac{\partial Q}{\partial q} - \frac{\partial q}{\partial t} \frac{1}{Q} \frac{\partial Q}{\partial q}$$
where I have used the fact that ##\frac{\partial Q}{\partial t} = \frac{\partial q}{\partial t} \frac{\partial Q}{\partial q}##

If by \dfrac{\partial}{\partial t} you mean differentiation with respect to t with q held constant, then by definition <br /> \frac{\partial q}{\partial t} = 0 and Q depends on q alone.

Now the left hand side is only dependent on ##t##, while the right hand side depends on both ##q## and ##t##. Since both sides still depend on ##t##, can I say that
$$(LHS) = (RHS) = g(t)$$
(LHS = Left hand side, RHS = Right hand side, g(t) is some function of time)

Additional question :
I have seen on a research paper where the author says that for the above equation to be separable, ##\frac{\partial q}{\partial t}## has to be constant so that RHS only depends on ##q##, hence ##(LHS) = (RHS) = constant##.
But since ##q## still depends on time (##q = x f(t)##), doesn't this mean RHS still depends on time and it should be ##(LHS) = (RHS) = g(t)## instead?

You need to provide more context. Are you changing variables from (x,t) to (q = xf(t),t)? If so, differentiation with respect to t with x held constant is not the same thing as differentiation with respect to t with q held constant, and you need to be clear which of the two you mean when you write \dfrac{\partial}{\partial t}.
 
pasmith said:
Are you changing variables from (x,t) to (q=xf(t),t)?
Yes, I am doing that.
pasmith said:
you need to be clear which of the two you mean when you write ##\frac{∂}{∂t}##
When I do ##\frac{\partial u(q,t)}{\partial t}##, I am not holding anything constant. So
$$\frac{\partial }{\partial t} = \frac{\partial q}{\partial t} \frac{\partial}{\partial q} + \frac{\partial}{\partial t}$$
The ##\frac{\partial}{\partial t}## on the 2nd term of the RHS holds q constant.
 
I have another question that is kind of related.
Untitled.png

I am currently studying this research paper by O. Hamidi. What bothers me is in the equation (5), why did he choose to write ##\tau (x,t) = G(x) + K(t)## instead of the usual separation of variables ##\tau (x,t) = G(x)K(t)##?
Both substitutions give different solution, and both methods seem good to me. Why do people use one over the other?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top