If a sequence [tex]\{f_n\}[/tex] is convergent in [tex]\left(C[0,1],||\cdot||_{\infty}\right)[/tex] then it is also convergent in [tex]\left(C[0,1],||\cdot||_1\right)[/tex].(adsbygoogle = window.adsbygoogle || []).push({});

I think I understand why this is true. (In my own words) The relationship between the supremum norm and the usual norm (really any p-norm) is that the supremum norm is the greatest value in all p-norms. So, for all sequences, if the sequence is convergent in the supremum norm it's convergent in all norms on the same space. Is this true?

Also, for a sequence to converge it means

[tex]\exists \, f \,\ni \,\forall \,\epsilon>0 \,\exists\, N\ni\, \forall\, x\in C[0,1][/tex]

[tex]||f_n-f||_{\infty}<\epsilon \quad \forall n>N[/tex]

This is a given, but how could I use that to prove the implied part? This is for my own edification.

Also, I can think of a counter example to show the other direction is not true.

Such as, [tex]f_n(t)=t^n \quad \text{then} \quad ||f_n||_1\rightarrow 0[/tex]

but, [tex]||f_n||_{\infty}\rightarrow 1[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Sequence Convergence

**Physics Forums | Science Articles, Homework Help, Discussion**