MHB Series Convergence with Comparison Test

Zoey93
Messages
15
Reaction score
0
Hey,

I am working on Calculus III and Analysis, I really need help with this one problem. I am not even sure where to begin with this problem. I have attached my assignment to this thread and the problem I need help with is A. Thank you!
 

Attachments

Physics news on Phys.org
Zoey93 said:
Hey,

I am working on Calculus III and Analysis, I really need help with this one problem. I am not even sure where to begin with this problem. I have attached my assignment to this thread and the problem I need help with is A. Thank you!
Here are a couple of hints to get you started.

1. The convergence or divergence of a series is not affected by the first few terms. So you can neglect the first three terms of the series, and concentrate on those starting with the term $\frac1{3+\sqrt2}.$

2. From that point onwards, the denominator of each term consists of two elements: a power of 3 and a square root. One of those elements is going to be much larger than the other. So think about what the series would look like if you neglected the smaller element.
 
Each of the important terms are of the form $\displaystyle \begin{align*} \frac{1}{ 3^n + \sqrt{n+1}} \end{align*}$, and since $\displaystyle \begin{align*} 3^n + \sqrt{n + 1} > 3^n \end{align*}$ for $\displaystyle \begin{align*} n \geq 0 \end{align*}$, that means $\displaystyle \begin{align*} \frac{1}{3^n + \sqrt{n + 1}} < \frac{1}{3^n} = \left( \frac{1}{3} \right) ^n \end{align*}$. So you can make a comparison to a simple geometric series :)
 
Back
Top