(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Determine whether the series converges and diverges.

[tex]\sum_{n=3}^{\infty}\ln \left(\frac{\cosh \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)[/tex]

3. The attempt at a solution

[tex]\sum_{n=3}^{\infty}\ln \left(\frac{1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}{1-\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}\right)[/tex]

[tex]=\sum_{n=3}^{\infty}\ln \left(\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\right)=\sum_{n=3}^{\infty}\ln \left(1+\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)[/tex]

[tex]=\sum_{n=3}^{\infty}\left(\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)[/tex]

series converges

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Series with Hyperbolic and Trigonometric functions

**Physics Forums | Science Articles, Homework Help, Discussion**