- #1

- 190

- 0

## Homework Statement

Determine whether the series converges and diverges.

[tex]\sum_{n=3}^{\infty}\ln \left(\frac{\cosh \frac{\pi}{n}}{\cos \frac{\pi}{n}}\right)[/tex]

## The Attempt at a Solution

[tex]\sum_{n=3}^{\infty}\ln \left(\frac{1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}{1-\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})}\right)[/tex]

[tex]=\sum_{n=3}^{\infty}\ln \left(\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\left(1+\frac{\pi^2}{2n^2}+O(\frac{1}{n^4})\right)\right)=\sum_{n=3}^{\infty}\ln \left(1+\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)[/tex]

[tex]=\sum_{n=3}^{\infty}\left(\frac{\pi^2}{n^2}+O(\frac{1}{n^4})\right)[/tex]

series converges