MHB Set Theory for Beginners: How is A' ⊆ A and its Complement a Subset of A?

Romono
Messages
5
Reaction score
0
Could someone please explain how the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}. And how can the complement of A be a subset of A? Forgive my ignorance here, I'm a beginning student of set theory.
 
Physics news on Phys.org
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.
 
Euge said:
Hi Romono,

The answer to your first question is by definition. For your second question, the complement of $A$ (in $A$) is the empty set, and the empty set is a subset of $A$.

Hi Euge,

Thanks for your reply, but maybe I should rephrase my question: Could you explain what "the image of a set A' ⊆ A is the set: f(A') = {b | b = f(a) for some a ∈ A'}" actually means? Could you break it down? I don't understand what an image of a set is even after reading the definition here.

Also, thanks for answering my second question -- I think I understand that now.
 
Suppose you have function $f : A \to B$. This means that for every $a\in A$, there corresponds a unique $b\in B$ such that $f(a) = b$. Given $a \in A$, the element $f(a) \in B$ is called the image of $a$. Thus, given a subset $A'$ of $A$, $f(A')$ is the set of images $f(a')$, as $a'$ ranges over $A'$.

Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$. How about $f(\{2,3\})$? Since $2$ and $3$ are the only elements of $\{2, 3\}$, $f(\{2, 3\}) = \{f(2), f(3)\} = \{b, c\}$.

Here's another example. Let $\Bbb N$ denote the set of natural numbers. Define $g : \Bbb N \to \Bbb N$ by setting $g(n) = n + 1$ for all $n\in \Bbb N$. Let's find $g(2\Bbb N)$, where $2\Bbb N$ is the set of even natural numbers. Every element of $2\Bbb N$ is of the form $2n$ for some $n\in \Bbb N$. Now $g(2n) = 2n + 1$ for all $n \in \Bbb N$. Thus $g(2\Bbb N)$ consists of all natural numbers of the form $2n + 1$. In other words, $g(2\Bbb N)$ is the set of odd natural numbers.
 
Euge said:
Let's consider an example. Define a function $f : \{1, 2, 3\} \to \{a, b, c\}$ by setting $f(1) = a$, $f(2) = b$, and $f(3) = c$. Since $1$ and $2$ are the only elements of $\{1, 2\}$, $f(\{1,2\}) = \{f(1), f(2)\} = \{a, b\}$.

Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...
 
Romono said:
Just to be clear in this example, {a,b} would then be the image, wouldn't it? I think I'm understanding it now...

Yes, it is the image of the set $\{1,2\}$.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
2
Views
2K
Replies
18
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
5
Views
2K
Back
Top