Set Theory Proof Help: Proving C∩D=Ø When A⊆C and B⊆D

dainty77
Messages
9
Reaction score
0
Hey guys!

I am new to this forum but saw the helpful posts on set theory proofs and wondered if I could finally get some help with this problem:

Suppose A, B, C, and D are sets with A⊆C and B⊆D. If A∩B=Ø then C∩D=Ø.

This is a biconditional so I have to prove it both ways correct?

Any help would be greatly appreciated!
 
Physics news on Phys.org
This belongs in the homework forum. Do you have some attempt?

I don't see a biconditional in your statement.
 
Oh my mistake!
 
Thread closed as dainty77 posted this question (per R136a1's suggestion) in the homework section.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top