Shape preserving fitting algorithms

f95toli
Science Advisor
Messages
3,509
Reaction score
1,072
"Shape preserving" fitting algorithms

Does anyone know if there is such a thing as a "shape preserving" fitting algorithm?

Now and then I run into the following problem: I have a set of rapidly varying data and try to fit it using an equation with e.g. 5 unknowns; I know that I can make it fit "by hand" (basically trial and error). However, when I try to fit it I often get that the solution is e.g. a straight line through the data; simply because it is a "good" solution in the least-square sense(although it doesn't make much sense from physical point of view). The wiki on the MLA even shows one example of this.

I can obviously get it to fit if I start with a "good" guess but that sort of defies the purpose of automatic fitting (and I often need to fit hundreds of experimental curves and sometimes in "real time" so doing it by hand is not really an option).
I understand that the problem is -there are several minima and the fitting algorithms finds the "wrong one" unless the initial conditions are close to the real solution- but I don't know how to solve it.
Presumably this is well-known problem, but I haven't been able to find a reference where they discuss possible solutions.

Is there any way of adding "shape preservation" to e.g. the MLA? E.g. by somehow adding that the condition for a "best fit" is that also the derivatives fit reasonably well?

Or are there any other possible solutions?
 
Mathematics news on Phys.org


What is the form of the equation with 5 unknowns?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top