- #1
etotheipi
- Homework Statement
- Given Maxwell's equations ##\nabla_a F^{ab} = -4\pi j^b## and ##\nabla_{[a}F_{bc]} = 0##
- Relevant Equations
- N/A
For the flat spacetime we could just use that partial derivatives commute as well as the antisymmetry of ##F^{ab}##, i.e. ##\partial_b \partial_a F^{ab} = -\partial_b \partial_a F^{ba} = -\partial_a \partial_b F^{ba} = -\partial_b \partial_a F^{ab} \implies \partial_b \partial_a F^{ab} = - 4\pi \partial_b j^b = 0 \implies \partial_b j^b = 0##.
The covariant derivative doesn't necessarily commute, I can only get ##\left[\nabla_b \nabla_a + \nabla_a \nabla_b\right] F^{ab} = 0## from the antisymmetry of ##F^{ab}##. But I tried to use the Riemann tensor to write down$$[\nabla_b \nabla_a - \nabla_a \nabla_b]F^{cd} = -{R_{bae}}^{c} F^{ed} - {R_{bae}}^d F^{ce}$$ $$\nabla_a \nabla_b F^{ab} = \nabla_b \nabla_a F^{ab} + {R_{bae}}^a F^{eb} + {R_{bae}}^b F^{ae}$$So we have$$0 = \left[\nabla_b \nabla_a + \nabla_a \nabla_b\right] F^{ab} = 2\nabla_b \nabla_a F^{ab} + {R_{bae}}^a F^{eb} + {R_{bae}}^b F^{ae} = 2\nabla_b \nabla_a F^{ab} + R_{be} F^{eb} - {R_{be}} F^{be}$$where in the last term I relabelled the dummy indices from ##a## to ##b##. Why aren't the last two terms vanishing, instead they sum to ##R_{be} F^{eb} - {R_{be}} F^{be} = 2R_{be} F^{eb}##? Thanks!
The covariant derivative doesn't necessarily commute, I can only get ##\left[\nabla_b \nabla_a + \nabla_a \nabla_b\right] F^{ab} = 0## from the antisymmetry of ##F^{ab}##. But I tried to use the Riemann tensor to write down$$[\nabla_b \nabla_a - \nabla_a \nabla_b]F^{cd} = -{R_{bae}}^{c} F^{ed} - {R_{bae}}^d F^{ce}$$ $$\nabla_a \nabla_b F^{ab} = \nabla_b \nabla_a F^{ab} + {R_{bae}}^a F^{eb} + {R_{bae}}^b F^{ae}$$So we have$$0 = \left[\nabla_b \nabla_a + \nabla_a \nabla_b\right] F^{ab} = 2\nabla_b \nabla_a F^{ab} + {R_{bae}}^a F^{eb} + {R_{bae}}^b F^{ae} = 2\nabla_b \nabla_a F^{ab} + R_{be} F^{eb} - {R_{be}} F^{be}$$where in the last term I relabelled the dummy indices from ##a## to ##b##. Why aren't the last two terms vanishing, instead they sum to ##R_{be} F^{eb} - {R_{be}} F^{be} = 2R_{be} F^{eb}##? Thanks!