MHB Show Equivalence: $a^d \equiv 1 \pmod n$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Equivalence
AI Thread Summary
The discussion centers on proving that if \( a^{n-1} \equiv 1 \pmod{n} \) for \( n = pq \) (where \( p \) and \( q \) are distinct primes) then \( a^d \equiv 1 \pmod{n} \) with \( d = \gcd(p-1, q-1) \). Initial attempts involve manipulating the exponent \( pq-1 \) and expressing it in terms of \( d \), but the conclusion that \( a^d \equiv 1 \pmod{n} \) remains unproven. The discussion introduces Euler's theorem and the Chinese Remainder Theorem as potential tools for the proof. Ultimately, a clearer understanding of the relationship between \( d \) and the modular conditions is suggested as a pathway to the solution. The conversation highlights the complexity of deriving the equivalence directly from the given conditions.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that $p,q$ are two distinct primes , $n=pq$ and $d=gcd(p-1,q-1)$.
I want to show that if $a^{n-1} \equiv 1 \pmod{n}$ for some $a$ then $a^d \equiv 1 \pmod{n}$.

That's what I have tried:

$
a^{pq-1}\equiv 1 \pmod n \Rightarrow a^{pq-p+p-1}\equiv 1 \pmod n \Rightarrow a^{p(q-1)+(p-1)}\equiv 1 \pmod n \Rightarrow a^{Ad+Bd}\equiv 1 \pmod n$ for some $A,B \in \mathbb{Z}$.
Then we have $ a^{d(A+B)}\equiv 1 \pmod n \Rightarrow \left (a^{d}\right )^{A+B}\equiv 1 \pmod n$.

But from this, we cannot deduce that $a^d \equiv 1 \pmod{n}$, can we? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Hello! (Wave)

Suppose that $p,q$ are two distinct primes , $n=pq$ and $d=gcd(p-1,q-1)$.
I want to show that if $a^{n-1} \equiv 1 \pmod{n}$ for some $a$ then $a^d \equiv 1 \pmod{n}$.

That's what I have tried:

$
a^{pq-1}\equiv 1 \pmod n \Rightarrow a^{pq-p+p-1}\equiv 1 \pmod n \Rightarrow a^{p(q-1)+(p-1)}\equiv 1 \pmod n \Rightarrow a^{Ad+Bd}\equiv 1 \pmod n$ for some $A,B \in \mathbb{Z}$.
Then we have $ a^{d(A+B)}\equiv 1 \pmod n \Rightarrow \left (a^{d}\right )^{A+B}\equiv 1 \pmod n$.

But from this, we cannot deduce that $a^d \equiv 1 \pmod{n}$, can we? (Thinking)

Hey evinda! (Smile)

I haven't figured it out yet. :(

However, I can see a couple of approaches...
According to Euler we have:
$$a^{\phi(pq)} \equiv a^{(p-1)(q-1)} \equiv 1 \pmod{pq}$$
And according to the Chinese Remainder Theorem we have:
$$(a^{pq-1}, a^{pq-1}) \equiv (1 \bmod p,1 \bmod q)\quad\Rightarrow\quad a^{q-1}\equiv 1 \pmod p \quad\land\quad a^{p-1}\equiv 1 \pmod q$$
(Thinking)
 
We also have that $d=x(p-1)+y(q-1)$ for some $x,y \in \mathbb{Z}$ and from this and what you said above it follows that $a^d \equiv 1 \pmod{n}$. (Thinking)
 
Last edited:
evinda said:
We also have that $d=x(p-1)+y(q-1)$ for some $x,y \in \mathbb{Z}$ and from this and what you said above it follows that $a^d \equiv 1 \pmod{n}$. (Thinking)

Ah yes. Nice! (Smile)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top