MHB Show $\|.\|$ is an Norm: Prove Triangle Inequality

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Norm
Click For Summary
To prove that the function defined by $\|(x,y)\|=\sqrt{x^2+4y^2}$ is a norm, it is essential to establish the triangle inequality. The initial steps confirm that $\|(x,y)\| \ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ hold true. The critical part involves demonstrating that $\|(x,y)+(x',y')\|^2 \leq (\|(x,y)\|+\|(x',y')\|)^2$, which can be derived using the Cauchy-Schwarz inequality. By substituting into the Euclidean metric relation, the triangle inequality follows, confirming that the function satisfies the properties of a norm. Thus, $\|(x,y)\|$ is indeed a norm.
Julio1
Messages
66
Reaction score
0
If $\|(x,y)\|=\sqrt{x^2+4y^2}.$ Show that $\|.\|$ is an norm.

Hello MHB! :)

The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!
 
Physics news on Phys.org
Hint: you know that $\sqrt{x^2+y^2}$ is a norm, being the Euclidean metric. Proceed by using the relation below:
$$\sqrt{x^2+(2y)^2}=\sqrt{x^2+4y^2} = \|(x,y)\|$$
 
Julio said:
If $\|(x,y)\|=\sqrt{x^2+4y^2}.$ Show that $\|.\|$ is an norm.

Hello MHB! :)

The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!

If you can show instead that $\|(x,y)+(x^{\prime},y^{\prime})\|^{\color{red}2} \leq (\|(x,y)\|+\|(x^{\prime},y^{\prime})\|)^{\color{red}2}$, then it immediately follows that $\|(x,y)+(x^{\prime},y^{\prime})\| \leq \|(x,y)\|+\|(x^{\prime},y^{\prime})\|$. Do you know how to proceed from here?
 
Bacterius said:
Hint: you know that $\sqrt{x^2+y^2}$ is a norm, being the Euclidean metric. Proceed by using the relation below:
$$\sqrt{x^2+(2y)^2}=\sqrt{x^2+4y^2} = \|(x,y)\|$$

Thanks Bacterius :)

But I don't understand which is the relation of the norm $\|.\|_2$ with the norm $\sqrt{x^2+4y^2}$ ?

Chris L T521 said:
If you can show instead that $\|(x,y)+(x^{\prime},y^{\prime})\|^{\color{red}2} \leq (\|(x,y)\|+\|(x^{\prime},y^{\prime})\|)^{\color{red}2}$, then it immediately follows that $\|(x,y)+(x^{\prime},y^{\prime})\| \leq \|(x,y)\|+\|(x^{\prime},y^{\prime})\|$. Do you know how to proceed from here?

Thanks Cris L T521.

Emm?, this it's good?

$\|(x,y)+(x',y')\|^2=\|(x+x',y+y')\|^2=\langle (x+x',y+y')\rangle =\langle (x,y)\rangle +\langle (x',y')\rangle +\langle (x',y)\rangle +\langle (x,y')\rangle=?$PD.: Sorry, my English is bad. :(
 
Julio said:
Thanks Bacterius :)

But I don't understand which is the relation of the norm $\|.\|_2$ with the norm $\sqrt{x^2+4y^2}$ ?

Well, from the Euclidean metric we get that for all $(x, y)$ and $(x', y')$ we have:

$$\sqrt{(x + x')^2 + (y + y')^2} \leq \sqrt{x^2 + y^2} + \sqrt{x'^2 + y'^2}$$

So by direct substitution of $(u, 2v) \to (x, y)$ and $(u', 2v') \to (x', y')$ we have:

$$\sqrt{(u + u')^2 + (2v + 2v')^2} \leq \sqrt{u^2 + (2v)^2} + \sqrt{u'^2 + (2v')^2}$$

$$\sqrt{(u + u')^2 + (2(v + v'))^2} \leq \sqrt{u^2 + (2v)^2} + \sqrt{u'^2 + (2v')^2}$$

$$\sqrt{(u + u')^2 + 4(v + v')^2} \leq \sqrt{u^2 + 4v^2} + \sqrt{u'^2 + 4v'^2}$$

Which is what you wanted. Does that make sense?
 
Julio said:
Thanks Cris L T521.

Emm?, this it's good?

$\|(x,y)+(x',y')\|^2=\|(x+x',y+y')\|^2=\langle (x+x',y+y')\rangle =\langle (x,y)\rangle +\langle (x',y')\rangle +\langle (x',y)\rangle +\langle (x,y')\rangle=?$PD.: Sorry, my English is bad. :(

Hm, it's not good. :-/

I would start off like this:

\[\begin{aligned}\|(x,y) + (x^{\prime},y^{\prime})\|^2 &= \langle (x,y) + (x^{\prime},y^{\prime}),(x,y) + (x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}), (x,y)\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + 2 \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\&= \|(x,y)\|^2 + 2\langle (x,y),(x^{\prime},y^{\prime})\rangle + \|(x^{\prime},y^{\prime})\|^2 \end{aligned}\]

To get the desired result, you'll need to recall that $\langle (x,y),(x^{\prime},y^{\prime})\rangle \leq \|(x,y)\|\|(x^{\prime},y^{\prime})\|$ by the Cauchy-Schwarz inequality.

Do you think you can wrap things up from here? (Bigsmile)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
954
  • · Replies 26 ·
Replies
26
Views
809
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K