Julio said:
Thanks Cris L T521.
Emm?, this it's good?
$\|(x,y)+(x',y')\|^2=\|(x+x',y+y')\|^2=\langle (x+x',y+y')\rangle =\langle (x,y)\rangle +\langle (x',y')\rangle +\langle (x',y)\rangle +\langle (x,y')\rangle=?$PD.: Sorry, my English is bad. :(
Hm, it's not good. :-/
I would start off like this:
\[\begin{aligned}\|(x,y) + (x^{\prime},y^{\prime})\|^2 &= \langle (x,y) + (x^{\prime},y^{\prime}),(x,y) + (x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}), (x,y)\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + 2 \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\&= \|(x,y)\|^2 + 2\langle (x,y),(x^{\prime},y^{\prime})\rangle + \|(x^{\prime},y^{\prime})\|^2 \end{aligned}\]
To get the desired result, you'll need to recall that $\langle (x,y),(x^{\prime},y^{\prime})\rangle \leq \|(x,y)\|\|(x^{\prime},y^{\prime})\|$ by the Cauchy-Schwarz inequality.
Do you think you can wrap things up from here? (Bigsmile)