MHB Show $\|.\|$ is an Norm: Prove Triangle Inequality

  • Thread starter Thread starter Julio1
  • Start date Start date
  • Tags Tags
    Norm
Julio1
Messages
66
Reaction score
0
If $\|(x,y)\|=\sqrt{x^2+4y^2}.$ Show that $\|.\|$ is an norm.

Hello MHB! :)

The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!
 
Physics news on Phys.org
Hint: you know that $\sqrt{x^2+y^2}$ is a norm, being the Euclidean metric. Proceed by using the relation below:
$$\sqrt{x^2+(2y)^2}=\sqrt{x^2+4y^2} = \|(x,y)\|$$
 
Julio said:
If $\|(x,y)\|=\sqrt{x^2+4y^2}.$ Show that $\|.\|$ is an norm.

Hello MHB! :)

The cases $\|(x,y)\|\ge 0$ and $\|\lambda (x,y)\|=|\lambda|\|(x,y)\|$ are obvious, but the case $\|(x,y)+(x',y')\|\le \|(x,y)\|+\|(x',y')\|$ I don't know how it do? Help me!

If you can show instead that $\|(x,y)+(x^{\prime},y^{\prime})\|^{\color{red}2} \leq (\|(x,y)\|+\|(x^{\prime},y^{\prime})\|)^{\color{red}2}$, then it immediately follows that $\|(x,y)+(x^{\prime},y^{\prime})\| \leq \|(x,y)\|+\|(x^{\prime},y^{\prime})\|$. Do you know how to proceed from here?
 
Bacterius said:
Hint: you know that $\sqrt{x^2+y^2}$ is a norm, being the Euclidean metric. Proceed by using the relation below:
$$\sqrt{x^2+(2y)^2}=\sqrt{x^2+4y^2} = \|(x,y)\|$$

Thanks Bacterius :)

But I don't understand which is the relation of the norm $\|.\|_2$ with the norm $\sqrt{x^2+4y^2}$ ?

Chris L T521 said:
If you can show instead that $\|(x,y)+(x^{\prime},y^{\prime})\|^{\color{red}2} \leq (\|(x,y)\|+\|(x^{\prime},y^{\prime})\|)^{\color{red}2}$, then it immediately follows that $\|(x,y)+(x^{\prime},y^{\prime})\| \leq \|(x,y)\|+\|(x^{\prime},y^{\prime})\|$. Do you know how to proceed from here?

Thanks Cris L T521.

Emm?, this it's good?

$\|(x,y)+(x',y')\|^2=\|(x+x',y+y')\|^2=\langle (x+x',y+y')\rangle =\langle (x,y)\rangle +\langle (x',y')\rangle +\langle (x',y)\rangle +\langle (x,y')\rangle=?$PD.: Sorry, my English is bad. :(
 
Julio said:
Thanks Bacterius :)

But I don't understand which is the relation of the norm $\|.\|_2$ with the norm $\sqrt{x^2+4y^2}$ ?

Well, from the Euclidean metric we get that for all $(x, y)$ and $(x', y')$ we have:

$$\sqrt{(x + x')^2 + (y + y')^2} \leq \sqrt{x^2 + y^2} + \sqrt{x'^2 + y'^2}$$

So by direct substitution of $(u, 2v) \to (x, y)$ and $(u', 2v') \to (x', y')$ we have:

$$\sqrt{(u + u')^2 + (2v + 2v')^2} \leq \sqrt{u^2 + (2v)^2} + \sqrt{u'^2 + (2v')^2}$$

$$\sqrt{(u + u')^2 + (2(v + v'))^2} \leq \sqrt{u^2 + (2v)^2} + \sqrt{u'^2 + (2v')^2}$$

$$\sqrt{(u + u')^2 + 4(v + v')^2} \leq \sqrt{u^2 + 4v^2} + \sqrt{u'^2 + 4v'^2}$$

Which is what you wanted. Does that make sense?
 
Julio said:
Thanks Cris L T521.

Emm?, this it's good?

$\|(x,y)+(x',y')\|^2=\|(x+x',y+y')\|^2=\langle (x+x',y+y')\rangle =\langle (x,y)\rangle +\langle (x',y')\rangle +\langle (x',y)\rangle +\langle (x,y')\rangle=?$PD.: Sorry, my English is bad. :(

Hm, it's not good. :-/

I would start off like this:

\[\begin{aligned}\|(x,y) + (x^{\prime},y^{\prime})\|^2 &= \langle (x,y) + (x^{\prime},y^{\prime}),(x,y) + (x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}), (x,y)\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\ &= \langle (x,y),(x,y)\rangle + 2 \langle (x,y),(x^{\prime},y^{\prime})\rangle + \langle (x^{\prime},y^{\prime}),(x^{\prime},y^{\prime})\rangle \\&= \|(x,y)\|^2 + 2\langle (x,y),(x^{\prime},y^{\prime})\rangle + \|(x^{\prime},y^{\prime})\|^2 \end{aligned}\]

To get the desired result, you'll need to recall that $\langle (x,y),(x^{\prime},y^{\prime})\rangle \leq \|(x,y)\|\|(x^{\prime},y^{\prime})\|$ by the Cauchy-Schwarz inequality.

Do you think you can wrap things up from here? (Bigsmile)
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
2
Views
834
  • · Replies 26 ·
Replies
26
Views
677
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 25 ·
Replies
25
Views
2K