MHB Show that the determinant is equal to 0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\alpha, \beta, \gamma$ be internal angles of an arbitrary triangle.

I want to show that $$\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=0$$

We have the following:
\begin{align*}&\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=\cos \beta \cdot \det \begin{pmatrix} -1 & \cos\alpha \\ \cos\gamma & \cos\beta\end{pmatrix}-\cos \alpha \cdot \det \begin{pmatrix} \cos\gamma & \cos\alpha \\ -1 & \cos\beta\end{pmatrix}+(-1)\cdot \det \begin{pmatrix} \cos\gamma & -1 \\ -1 & \cos\gamma \end{pmatrix} \\ & = \cos \beta \cdot \left (-\cos \beta-\cos\gamma\cdot \cos\alpha\right )-\cos \alpha \cdot \left (\cos\gamma\cdot \cos\beta-(-1)\cdot \cos\alpha\right )-\left (\cos^2 \gamma -(-1)^2\right ) \\ & =-\cos^2 \beta-\cos\gamma\cdot \cos\alpha\cdot \cos \beta-\cos\alpha\cdot \cos\gamma\cdot \cos\beta- \cos^2\alpha-\cos^2 \gamma +1 \\ & =1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma \end{align*}

Do we use here the Law of cosines?
\begin{align*}&c^2=a^2+b^2-2ab\cdot \cos \gamma \Rightarrow \cos \gamma=\frac{a^2+b^2-c^2}{2ab} \\ &b^2=a^2+c^2-2ac\cdot \cos \beta \Rightarrow \cos \beta=\frac{a^2+c^2-b^2}{2ac} \\ &a^2=b^2+c^2-2bc\cdot \cos \alpha \Rightarrow \cos\alpha=\frac{b^2+c^2-a^2}{2bc}\end{align*}

Or how could we continue? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)
 
I like Serena said:
That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)

Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ? (Wondering)
 
mathmari said:
Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ?

That is what I was thinking yes.
I didn't try to calculate it manually though. It's just an alternative approach.
However, I did find that it is sufficient for Wolfram to conclude that it's zero, so it seems likely that filling it in by hand is feasible. (Thinking)

Another alternative approach is to try to find and find a geometric reason why the vectors are linearly dependent.
I didn't find one yet though. (Thinking)
 
mathmari said:
$$1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma$$

Doesn't this expression have cyclic symmetry? Implying there is an extremum at $\cos\alpha=\cos\beta=\cos\gamma$? Then, applying La Grange multipliers to the general case $\alpha+\beta+\gamma=\pi$, we arrive at the desired result.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top