MHB Show that the determinant is equal to 0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant
Click For Summary
The discussion focuses on proving that the determinant of a specific matrix involving the cosines of the angles of a triangle equals zero. The calculation involves expanding the determinant and simplifying the resulting expression, which leads to a form that suggests a relationship among the angles. Participants consider using the Law of Cosines and the identity α + β + γ = π to further simplify the proof. There is also a mention of exploring geometric interpretations of linear dependence among vectors. Ultimately, the cyclic symmetry of the expression is noted, indicating potential extremum conditions that could help in proving the determinant is zero.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\alpha, \beta, \gamma$ be internal angles of an arbitrary triangle.

I want to show that $$\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=0$$

We have the following:
\begin{align*}&\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=\cos \beta \cdot \det \begin{pmatrix} -1 & \cos\alpha \\ \cos\gamma & \cos\beta\end{pmatrix}-\cos \alpha \cdot \det \begin{pmatrix} \cos\gamma & \cos\alpha \\ -1 & \cos\beta\end{pmatrix}+(-1)\cdot \det \begin{pmatrix} \cos\gamma & -1 \\ -1 & \cos\gamma \end{pmatrix} \\ & = \cos \beta \cdot \left (-\cos \beta-\cos\gamma\cdot \cos\alpha\right )-\cos \alpha \cdot \left (\cos\gamma\cdot \cos\beta-(-1)\cdot \cos\alpha\right )-\left (\cos^2 \gamma -(-1)^2\right ) \\ & =-\cos^2 \beta-\cos\gamma\cdot \cos\alpha\cdot \cos \beta-\cos\alpha\cdot \cos\gamma\cdot \cos\beta- \cos^2\alpha-\cos^2 \gamma +1 \\ & =1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma \end{align*}

Do we use here the Law of cosines?
\begin{align*}&c^2=a^2+b^2-2ab\cdot \cos \gamma \Rightarrow \cos \gamma=\frac{a^2+b^2-c^2}{2ab} \\ &b^2=a^2+c^2-2ac\cdot \cos \beta \Rightarrow \cos \beta=\frac{a^2+c^2-b^2}{2ac} \\ &a^2=b^2+c^2-2bc\cdot \cos \alpha \Rightarrow \cos\alpha=\frac{b^2+c^2-a^2}{2bc}\end{align*}

Or how could we continue? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)
 
I like Serena said:
That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)

Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ? (Wondering)
 
mathmari said:
Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ?

That is what I was thinking yes.
I didn't try to calculate it manually though. It's just an alternative approach.
However, I did find that it is sufficient for Wolfram to conclude that it's zero, so it seems likely that filling it in by hand is feasible. (Thinking)

Another alternative approach is to try to find and find a geometric reason why the vectors are linearly dependent.
I didn't find one yet though. (Thinking)
 
mathmari said:
$$1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma$$

Doesn't this expression have cyclic symmetry? Implying there is an extremum at $\cos\alpha=\cos\beta=\cos\gamma$? Then, applying La Grange multipliers to the general case $\alpha+\beta+\gamma=\pi$, we arrive at the desired result.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 24 ·
Replies
24
Views
2K
Replies
46
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K