MHB Show that the determinant is equal to 0

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Determinant
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $\alpha, \beta, \gamma$ be internal angles of an arbitrary triangle.

I want to show that $$\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=0$$

We have the following:
\begin{align*}&\det \begin{pmatrix}\cos \beta & \cos \alpha&-1 \\ \cos\gamma & -1 & \cos\alpha \\ -1 & \cos\gamma & \cos\beta\end{pmatrix}=\cos \beta \cdot \det \begin{pmatrix} -1 & \cos\alpha \\ \cos\gamma & \cos\beta\end{pmatrix}-\cos \alpha \cdot \det \begin{pmatrix} \cos\gamma & \cos\alpha \\ -1 & \cos\beta\end{pmatrix}+(-1)\cdot \det \begin{pmatrix} \cos\gamma & -1 \\ -1 & \cos\gamma \end{pmatrix} \\ & = \cos \beta \cdot \left (-\cos \beta-\cos\gamma\cdot \cos\alpha\right )-\cos \alpha \cdot \left (\cos\gamma\cdot \cos\beta-(-1)\cdot \cos\alpha\right )-\left (\cos^2 \gamma -(-1)^2\right ) \\ & =-\cos^2 \beta-\cos\gamma\cdot \cos\alpha\cdot \cos \beta-\cos\alpha\cdot \cos\gamma\cdot \cos\beta- \cos^2\alpha-\cos^2 \gamma +1 \\ & =1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma \end{align*}

Do we use here the Law of cosines?
\begin{align*}&c^2=a^2+b^2-2ab\cdot \cos \gamma \Rightarrow \cos \gamma=\frac{a^2+b^2-c^2}{2ab} \\ &b^2=a^2+c^2-2ac\cdot \cos \beta \Rightarrow \cos \beta=\frac{a^2+c^2-b^2}{2ac} \\ &a^2=b^2+c^2-2bc\cdot \cos \alpha \Rightarrow \cos\alpha=\frac{b^2+c^2-a^2}{2bc}\end{align*}

Or how could we continue? (Wondering)
 
Physics news on Phys.org
Hey mathmari! (Smile)

That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)
 
I like Serena said:
That should work I think although it looks like the expression will get pretty complicated first.
Alternatively we might try to use $α+β+γ=\pi$.
That is, substitute $γ=\pi-α-β$. (Thinking)

Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ? (Wondering)
 
mathmari said:
Do you mean $\cos \gamma=\cos (\pi -\alpha-\beta)=-\cos (\alpha+\beta )$ ?

That is what I was thinking yes.
I didn't try to calculate it manually though. It's just an alternative approach.
However, I did find that it is sufficient for Wolfram to conclude that it's zero, so it seems likely that filling it in by hand is feasible. (Thinking)

Another alternative approach is to try to find and find a geometric reason why the vectors are linearly dependent.
I didn't find one yet though. (Thinking)
 
mathmari said:
$$1-2\cdot \cos\alpha\cdot \cos\beta\cdot \cos\gamma - \cos^2\alpha-\cos^2 \beta-\cos^2 \gamma$$

Doesn't this expression have cyclic symmetry? Implying there is an extremum at $\cos\alpha=\cos\beta=\cos\gamma$? Then, applying La Grange multipliers to the general case $\alpha+\beta+\gamma=\pi$, we arrive at the desired result.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
24
Views
2K
Replies
46
Views
3K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K