Show that there is a z such that f(z)=0

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion revolves around proving the existence of a point \( z \) such that \( f(z) = 0 \) for a continuous function \( f: [a,b] \to \mathbb{R} \) under the condition that for every \( x \) in the interval, there exists a \( y \) such that \( |f(y)| < \frac{|f(x)|}{2} \). The initial argument presented was flawed because it incorrectly assumed \( y = x \). The correct approach involves constructing a sequence \( (x_n) \) using the given condition and applying the Bolzano-Weierstrass theorem to show that this sequence has a convergent subsequence, leading to the conclusion that \( f(z) = 0 \) for some \( z \) in \( [a,b] \).

PREREQUISITES
  • Understanding of continuous functions on closed intervals
  • Familiarity with the Bolzano-Weierstrass theorem
  • Knowledge of the Extreme Value Theorem (EVT)
  • Basic concepts of sequences and limits in real analysis
NEXT STEPS
  • Study the Bolzano-Weierstrass theorem in detail
  • Learn about the Extreme Value Theorem (EVT) and its applications
  • Explore the properties of continuous functions on closed intervals
  • Investigate the construction of sequences and their convergence
USEFUL FOR

Mathematics students, particularly those studying real analysis, as well as educators and anyone interested in the properties of continuous functions and their implications in mathematical proofs.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! :)
I am given the following exercise:
$f:[a,b] \to \mathbb{R}$ continuous and $\forall x$ there is a $y$ such that $|f(y)| < \frac{|f(x)|}{2}$ .Show that there is a $z$ such that $f(z)=0$.
That's what I have tried:
Suppose that there is not a $z$ such that $f(z)=0$.Then $f(x)>0 , \forall x$ or $f(x)<0 , \forall x$.
If $f(x)>0 , \forall x$ then from the relation $|f(y)| <\frac{|f(x)|}{2}$ for $x=y$ we find $\frac{-f(x)}{2}>0$,that can't be true,as we have supposed that $f$ is positive $\forall$ x.
Now,suppose that $f(x)<0 , \forall x$,from the relation $|f(y)| < \frac{|f(x)|}{2}$ for $x=y$ we find $|f(x)|<0$,that also can't be true.

So,we conclude that it can't be true that $f$ doesn't change sign,so there has to be a $z$ such that $f(z)=0$.

Could you tell me if it is right?
 
Physics news on Phys.org
evinda said:
Hey! :)
I am given the following exercise:
$f:[a,b] \to \mathbb{R}$ continuous and $\forall x$ there is a $y$ such that $|f(y)| < \frac{|f(x)|}{2}$ .Show that there is a $z$ such that $f(z)=0$.
That's what I have tried:
Suppose that there is not a $z$ such that $f(z)=0$.Then $f(x)>0 , \forall x$ or $f(x)<0 , \forall x$.
If $f(x)>0 , \forall x$ then from the relation $|f(y)| <\frac{|f(x)|}{2}$ for $x=y$ we find $\frac{-f(x)}{2}>0$,that can't be true,as we have supposed that $f$ is positive $\forall$ x.
Now,suppose that $f(x)<0 , \forall x$,from the relation $|f(y)| < \frac{|f(x)|}{2}$ for $x=y$ we find $|f(x)|<0$,that also can't be true.

So,we conclude that it can't be true that $f$ doesn't change sign,so there has to be a $z$ such that $f(z)=0$.

Could you tell me if it is right?
No, that argument does not work: you are not permitted to take $y=x$. You are given that for each $x$ in $[a,b]$ there exists a $y$ in $[a,b]$ such that $|f(y)| < |f(x)|/2$, but there is no reason to think that $y=x$.

Start with an arbitrary point $x_1$ in $[a,b]$, and use the given condition to construct inductively a sequence $(x_n)$ such that $|f(x_{n+1})| < |f(x_n)|/2$ for each $n$. Then apply a theorem which says that this sequence must have a convergent subsequence.
 
Opalg said:
No, that argument does not work: you are not permitted to take $y=x$. You are given that for each $x$ in $[a,b]$ there exists a $y$ in $[a,b]$ such that $|f(y)| < |f(x)|/2$, but there is no reason to think that $y=x$.

Start with an arbitrary point $x_1$ in $[a,b]$, and use the given condition to construct inductively a sequence $(x_n)$ such that $|f(x_{n+1})| < |f(x_n)|/2$ for each $n$. Then apply a theorem which says that this sequence must have a convergent subsequence.

Which theorem could I use for example? :confused:
 
Here is another idea.

Consider, $|f|:[a,b]\to \mathbb{R}$ this function is continous.
By EVT it has a minimal value $m$.

If $m=0$ the proof of your claim is complete.

If $m>0$ choose $x$ such that $|f(x)| = m$. By hypothesis of your problem there is a $y$ such that $|f(y)| < \tfrac{1}{2}|f(x)|$. This leads to a contradiction ...
 
Opalg said:

Ok!Thanks a lot! :)

- - - Updated - - -

ThePerfectHacker said:
Here is another idea.

Consider, $|f|:[a,b]\to \mathbb{R}$ this function is continous.
By EVT it has a minimal value $m$.

If $m=0$ the proof of your claim is complete.

If $m>0$ choose $x$ such that $|f(x)| = m$. By hypothesis of your problem there is a $y$ such that $|f(y)| < \tfrac{1}{2}|f(x)|$. This leads to a contradiction ...

Ok..Thank you! :o
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K