Showing convexity of a discrete function

  • Thread starter Thread starter TaPaKaH
  • Start date Start date
  • Tags Tags
    Discrete Function
TaPaKaH
Messages
51
Reaction score
0
Suppose we have a function ##f:\mathbb{N}\times\mathbb{N}\to\mathbb{R}_+## that is
  • increasing: ##f(x+e_i)\geq f(x)## for any ##x\in\mathbb{N}^2## and ##i\in\{1,2\}##;
  • convex: ##f(x+2e_i)-f(x+e_i)\geq f(x+e_i)-f(x)## for any ##x\in\mathbb{N}^2## and ##i\in\{1,2\}##.
How could one show that a function ##g(x):=cf(x)-\max\{c_1\left(f(x)-f(x-e_1)\right),c_2\left(f(x)-f(x-e_2)\right)\}## for ##c=\max\{c_1,c_2\}## (##c_1,c_2\geq0##) is also convex wrt definition above?
 
Physics news on Phys.org
Have you tried substituting g into that convexity inequality?
 
So far I did case-by-case analysis branching on terms, at which maxima for ##f(x+2e_i)##, ##f(x+e_i)## and ##f(x)## are achieved. Six of eight cases went rather smooth, but two cases are giving me problems.

Case 1:
\begin{cases}
c_1\left[f(x)-f(x-e_1)\right]&\geq c_2\left[f(x)-f(x-e_2)\right]\\
c_1\left[f(x+e_1)-f(x)\right]&\geq c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
c_1\left[f(x+2e_1)-f(x+e_1)\right]&\leq c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right],
\end{cases}
in which case
\begin{array}{rl}
g(x)&=c f(x)-c_1\left[f(x)-f(x-e_1)\right]\\
g(x+e_1)&=c f(x+e_1)-c_1\left[f(x+e_1)-f(x)\right]\\
g(x+2e_1)&=c f(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right].
\end{array}
What we want to show is that
\begin{array}{rll}
g(x+2e_1)-2g(x+e_1)+g(x)
&=\begin{matrix}
cf(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right]\\
-2c f(x+e_1)+2c_1\left[f(x+e_1)-f(x)\right]\\
+cf(x)-c_1\left[f(x)-f(x-e_1)\right]
\end{matrix}
&\geq0
\end{array}
Case 2:
\begin{cases}
c_1\left[f(x)-f(x-e_1)\right]&\geq c_2\left[f(x)-f(x-e_2)\right]\\
c_1\left[f(x+e_1)-f(x)\right]&\leq c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
c_1\left[f(x+2e_1)-f(x+e_1)\right]&\leq c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right],
\end{cases}
in which case
\begin{array}{rl}
g(x)&=c f(x)-c_1\left[f(x)-f(x-e_1)\right]\\
g(x+e_1)&=c f(x+e_1)-c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
g(x+2e_1)&=c f(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right].
\end{array}
What we want to show is that
\begin{array}{rll}
g(x+2e_1)-2g(x+e_1)+g(x)
&=\begin{matrix}
cf(x+2e_1)-c_2\left[f(x+2e_1)-f(x+2e_1-e_2)\right]\\
-2c f(x+e_1)+2c_2\left[f(x+e_1)-f(x+e_1-e_2)\right]\\
+cf(x)-c_1\left[f(x)-f(x-e_1)\right]
\end{matrix}
&\geq0
\end{array}
I guess the proof lies in rearranging the terms in a smart way and then applying the assumptions and properties. One can also use that ##f## is also supermodular, that is ##f(x+e_1+e_2)+f(x)\geq f(x+e_1)+f(x+e_2)## for any ##x\in\mathbb{N}^2##.
 
Back
Top