Showing existence of an Edge s.t. Graphs T1' , T2' are Trees

Click For Summary
SUMMARY

This discussion centers on proving the existence of an edge in graph T2 that connects two disconnected components in graph T1 after removing an edge e1. The participants explore the implications of removing e1 from T1, leading to two subtrees T1^a and T1^b. They assert that since T2 is a tree, there must be at least one edge connecting these two components, and they discuss the construction of a new tree T1' by adding edges from T2 to reconnect the components. The proof strategy involves identifying paths in T2 that link vertices from T1^a and T1^b.

PREREQUISITES
  • Understanding of graph theory concepts, specifically trees and connected components.
  • Familiarity with edge and vertex notation in graph representations.
  • Knowledge of proof techniques, particularly proof by contradiction.
  • Ability to visualize and manipulate graph structures effectively.
NEXT STEPS
  • Study the properties of trees in graph theory, focusing on connectivity and edge removal.
  • Learn about proof techniques in mathematics, especially proof by contradiction and constructive proofs.
  • Explore graph traversal algorithms, such as Depth-First Search (DFS) and Breadth-First Search (BFS), to understand pathfinding in trees.
  • Investigate the concept of spanning trees and their applications in connecting graph components.
USEFUL FOR

Mathematicians, computer scientists, and students studying graph theory, particularly those interested in connectivity and tree structures in graphs.

CGandC
Messages
326
Reaction score
34
Homework Statement
Let ## G ## be a connected graph, simple and finite. Let ## T_1 = \langle V,E_1 \rangle ,\ T_2 = \langle V,E_2\rangle ## be trees s.t. ## E_1, E_2 \subseteq E ##. Show that for every edge ## e_1 \in E_1 \setminus E_2 ## there exists an edge ## e_2 \in E_2 \setminus E_1 ## s.t.
## T_1' = \langle V,(E_1\setminus \{ e_1 \}) \cup \{ e_2 \} \rangle ~~~~~## , ## T_2' = \langle V,(E_2\setminus \{ e_2 \}) \cup \{ e_1 \} \rangle ~~~~##, are both trees.
Relevant Equations
Knowing definitions in graph theory: Trees, Simple circuits, Simple path, circuits, paths.
Attempt - I am stuck at this problem for hours, couldn't make any progress. Still, here's what I've done :
Let ## e_1 \in E_1 \setminus E_2 ## be arbitrary. Suppose for the sake of contradiction that ## \forall ## ## e_2 \in E_2 \setminus E_1 ##, ## T_1' = \langle V,(E_1\setminus \{ e_1 \}) \cup \{ e_2 \} \rangle ~~~ ## OR ## ~~~~ T_2' = \langle V,(E_2\setminus \{ e_2 \}) \cup \{ e_1 \} \rangle ## aren't trees.
Let ## e_2 \in E_2 \setminus E_1 ## be arbitrary, then ## T_1' = \langle V,(E_1\setminus \{ e_1 \}) \cup \{ e_2 \} \rangle ~~~ ## OR ## ~~~~ T_2' = \langle V,(E_2\setminus \{ e_2 \}) \cup \{ e_1 \} \rangle ## aren't trees. We'll show that ## T_1' ## is connected or has simple circuits and we'll also show that ## T_2' ## is connected or has simple circuits ( so that we'll reach contradiction for both ). [ From here I don't know what else to do ]

I feel lost. I think in my attempt I'm overcomplicating the proof and I'd very appreciate if you can please help me/give me a direction as to what I should do.
 
Physics news on Phys.org
I haven't fully though through the proof, but I think there are some simpler ideas that you can start with to at least get some intuition.

For example, if you take ##e_1## out of ##T_1##, then you split that tree into two disconnected trees. Claim: there must exist an edge in ##T_2## that joins these two groups together.
 
Let's say for intuition, ## T_1 ## looks like this:
1622054615289.png
where ## e_1 = \{ v ,u \} ##.
After taking the edge out of the graph we get two subtrees for ## T_1 ## which I denote ## T_1^{(a)} ## , ## T_1^{(b)} ##:
1622054703943.png


But I'm having difficulty seeing how ## T_2 ## plays a role here.
 
Does there have to be an edge in ##T_2## that connects a vertex in ##T_1^a## and ##T_1^b##? I think the answer is yes.
 
Ok, if ## e_1 = \{ u ,v \} \in E_1 \setminus E_2 ## note that ## u,v \in V##, In particular, these vertices exist in tree ## T_2 ##, hence there must exist a simple path between them in ## T_2 ##, meaning ## \langle u,w_1,...,w_k,v \rangle ## where ## w_1,...,w_k \in V ## .
But how can I use this simple path in order to show that there exist an edge ## \{ u, v \} \in E_2 ##?
 
The edge ##\{u,v\}## is not going to be in ##E_2##. There has to be some other edge in ##T_2## that spans the gap.
 
So I can look at the simple path ## \langle u,w_1,...,w_k,v \rangle ## from ## T_2 ##, take ## w_1,...,w_k ## and connect them to ## u,v ## in ## T_1 ## after the split, If I do this then I have necessarily bridged the gap that was split when I removed ## e_1 ## from ## T_1 ##. So although I may not have a single edge connecting ## u,v ## in ## T_1 ## again, I have a set of edges going from ## u ## to ## v ## in ## T_1 ##
 
Why are you connecting them to u and v? The only thing you are allowed to do is pick an edge from ##T_2##. So the edge you would add is going to be like, ##\{w_i, w_{i+1}\}## for some i.

Try actually drawing a ##T_2## and see if you can point at the right edge.
 
Yes you are right. Here's an example of what ## T_2 ## could look like
1622062359383.png

I'll pick edge ## { w_1,w_2} \in E_2 ## and add it to the gap after the split in ## T_1 ##, so ## T_1 ## would look like:
1622062914393.png

and we denote this new tree as ## T_1' ## , we do the same process to get ## T_2' ##
 
  • #10
In your forest of ##T_1^a## and ##T_1^b## u and v both had degree one. You were then supposed to add an edge that did not connect u to v, so at least one of them should be a degree one vertex in ##T_1'##. Hence I think your picture can't be correct.

I'm not really sure how ##T_1## and ##T_2## are supposed to lay on top of each other, like which vertices in each graph match to which vertices on the other?
 
  • #11
So ## T_1' ## ( after creating only one edge which leaves ## u ## with degree 1) should look like this?:
1622092602929.png
 
  • #12
##w_1## there is a totally new vertex you just added to the picture. It has to be a vertex that already existed.

I think you should label every single vertex in the picture of ##T_1## and give the same labeling to the picture of ##T_2##. Then you can see where ##w_1## and ##w_2## actually are in the ##T_1## picture. You may or may not have picked the right edge, your picture so far is not sufficient to know if ##\{u,w_1\},\{w_1,w_2\}## or ##\{w_2,v\}## is the right edge.
 
  • #13
Ok, I labeled the graphs:
1622134590812.png
1622134616326.png

I still don't fully see which edge I can take in ## T_2 ## that will connect me ## u,v ## After I split the edge between them in graph ## T_1 ##
 
  • #14
When you remove ##u,v## from ##T_1##, to reconnect the trees you need to find an edge from the set ##(u,p_5,p_6)## to the set of the other vertices.

##p_5,p_2## would work. So would ##p_5,v##. So would ##u,w_2##. ##p_6,p_2## would also work.

The main point is that since ##T_2## is a tree, I claim there is at least one edge that connects these two groups of vertices.
 
  • #15
Ok I think I got the intuition, here's an example of what ## T_1' ## could be based on the last two images above:
1622186182195.png


Maybe the proof should be something like:
Let ## e_1 \in E_1 \setminus E_2 ##. Meaning there exist ## u,v \in V ## s.t. ## e_1 = \{ u,v \} ##. since ## e_1 \notin E_2 ## and ## T_2 ## is a tree hence there exists a simple path ## \langle u,w_1,...,w_k,v \rangle## in ## T_2 ##. Remove ## e_1 ## from ## T_1 ##, we'll get two subtrees which we denote as ## T_1^{a} ##, ## T_1^{b} ## and the whole forest denote as ## T_1^{''} ##. Choose in ## \langle u,w_1,...,w_k,v \rangle ## a vertex that has no path to ## v ## or ## u ##. Suppose we chose a vertex that has no path to ## u ## and we denote it as ## \tilde{w} ##. We'll Choose an edge from ## \tilde{w} ## to another vertex that has a path to ## u ## that we denote as ## \tau ## s.t. ## \{ \tilde{w}, \tau \} \in E_2 ##. Create the edge in ## T_1^{''} ## , now ## T_1^{''} ## is not a forest but a tree since ## T_1^{a} , T_1^{b} ## are connected, denote this tree as ## T_1^{'} ##. We similarly prove existence of ## T_2^{'} ##, and so we're finished.

Is the proof above ok?, if not ,I don't really know how to prove the theorem that there must exist an edge in ## T_2 ## that will connect the two disconnected components in ## T_1^{''} ##. Do you have an Idea as to what I should do?
 
  • #16
CGandC said:
Choose in ## \langle u,w_1,...,w_k,v \rangle ## a vertex that has no path to ## v ## or ## u ##. Suppose we chose a vertex that has no path to ## u ## and we denote it as ## \tilde{w} ##. We'll Choose an edge from ## \tilde{w} ## to another vertex that has a path to ## u ## that we denote as ## \tau ## s.t. ## \{ \tilde{w}, \tau \} \in E_2 ##.

I don't really understand what these are trying to say, but I would word it like this. The path ##\left<u,w_1,...,w_n,v\right>## in ##T_2## starts with a vertex in ##T_1^a## and ends with a vertex in ##T_1^b##. Hence it must have an edge that starts with a vertex in ##T_1^a## and ends with a vertex in ##T_1^b##, since every edge that starts in ##T_1^a## ends in either ##T_1^a## or ##T_1^b##, and if no edge starts in ##T_1^a## and ends in ##T_1^b##, then ##u\in T_1^a## implies ##w_1\in T_1^a##, which then implies ##w_2\in T_1^a##, all the way up to ##v\in T_1^a##. But ##v## is actually in ##T_1^b##.
 
  • Like
Likes   Reactions: CGandC
  • #17
Ok thanks, I think I have to think about the problem more in order for it to fully sink in.
 
  • #18
For what it's worth, I think my last post finds the edge ##u,w_2##
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
13K
  • · Replies 38 ·
2
Replies
38
Views
9K
  • · Replies 175 ·
6
Replies
175
Views
26K
  • · Replies 71 ·
3
Replies
71
Views
13K
  • · Replies 16 ·
Replies
16
Views
7K
  • · Replies 28 ·
Replies
28
Views
7K
  • · Replies 4 ·
Replies
4
Views
4K