Showing Relation of e^(ipa/ħ)xe^(-ipa/ħ)=x+a Using Power Series

Click For Summary
SUMMARY

The operator relation e^(ipa/ħ)xe^(-ipa/ħ) = x + a has been successfully demonstrated using the function f(p) and the operator representation x = iħd/dp. The calculation involved substituting x into the operator expression, leading to the result af(p) + cf'(p), where c is a numerical factor that was identified as iħ. Ultimately, the relation was confirmed as e^(ipa/ħ)xe^(-ipa/ħ) = a + iħd/dp, fulfilling the requirement of the problem statement.

PREREQUISITES
  • Understanding of quantum mechanics operators, specifically the momentum operator p and position operator x.
  • Familiarity with the exponential operator e^A and its series expansion.
  • Knowledge of differentiation in the context of wave functions and operator algebra.
  • Ability to manipulate functions and apply operator representations in quantum mechanics.
NEXT STEPS
  • Study the properties of exponential operators in quantum mechanics, particularly e^(ipa/ħ).
  • Learn about the implications of operator commutation relations in quantum mechanics.
  • Explore the role of wave functions in quantum mechanics and their relationship to operators.
  • Investigate the significance of the position and momentum operators in the context of the Heisenberg uncertainty principle.
USEFUL FOR

Students and professionals in quantum mechanics, physicists working with operator algebra, and anyone interested in the mathematical foundations of quantum theory.

RedMech
Messages
13
Reaction score
0
1. The problem statement:

Show that if the operator relation

e^(ipa/ħ)xe^(-ipa/ħ) = x+a

holds. The operator e^A is defined to the

e^A= Ʃ(A^n)/n!
n=0

[Hint: Calculate e^(ipa/ħ)xe^(-ipa/ħ)f(p) where f(p)is any function of p, and use the representation x=iħd/dp]


2. Homework Equations :

I am not entirely sure but I think those presented in the problem statement are sufficient.


3. The Attempt at a Solution :

I calculated e^(ipa/ħ)xe^(-ipa/ħ)f(p) by replacing x=iħd/dp to get;

e^(ipa/ħ)iħd/dp[e^(-ipa/ħ)f(p)]= e^(ipa/ħ){iħ[(-ia/ħ)e^(-ipa/ħ)f(p)+e^(-ipa/ħ)f'(p)]}
= e^(ipa/ħ){ae^(-ipa/ħ)f(p)+e^(-ipa/ħ)f'(p)]}
= af(p)+f'(p).
∴ af(p)+f'(p) = x + a.

From this point I become entirely confused, I don't know how everything is suppose to tie into the power series.
 
Physics news on Phys.org
RedMech said:
1. The problem statement:

Show that if the operator relation

e^(ipa/ħ)xe^(-ipa/ħ) = x+a

holds. The operator e^A is defined to the

e^A= Ʃ(A^n)/n!
n=0

Hello RedMech. From the wording of the problem, I'm not sure what the question is. Could you restate what it is you are suppose to show?
 
Last edited:
RedMech said:
I copied it word for word.

Well, not quite. You added the word "if" that threw me a bit. But, no problem. Your link cleared it up.

RedMech said:
I calculated e^(ipa/ħ)xe^(-ipa/ħ)f(p) by replacing x=iħd/dp to get;

e^(ipa/ħ)iħd/dp[e^(-ipa/ħ)f(p)]= e^(ipa/ħ){iħ[(-ia/ħ)e^(-ipa/ħ)f(p)+e^(-ipa/ħ)f'(p)]}
= e^(ipa/ħ){ae^(-ipa/ħ)f(p)+e^(-ipa/ħ)f'(p)]}
= af(p)+f'(p).

This looks good except for a missing numerical factor for the part shown in red above.
Your result will then have the form af(p)+cf'(p) where c is the missing factor. See what happens if you then rewrite f'(p) in terms of the x operator acting on f(p).

From this point I become entirely confused, I don't know how everything is suppose to tie into the power series.

You don't need to use the power series. I think the problem statement threw that in just to state the meaning of e^A.
 
TSny said:
Well, not quite. You added the word "if" that threw me a bit. But, no problem. Your link cleared it up.



This looks good except for a missing numerical factor for the part shown in red above.
Your result will then have the form af(p)+cf'(p) where c is the missing factor. See what happens if you then rewrite f'(p) in terms of the x operator acting on f(p).



You don't need to use the power series. I think the problem statement threw that in just to state the meaning of e^A.

So af(p)+cf'(p), would be my final solution. I pay no attention to the power series?
 
TSny said:
See what happens if you then rewrite f'(p) in terms of the x operator acting on f(p).

Not sure I know what you mean by this. The phrasing of the question has thrown me off so much that I don't know what I am looking for.
 
RedMech said:
So af(p)+cf'(p), would be my final solution. I pay no attention to the power series?

No, that's not the final solution. You are asked to show that e^(ipa/ħ)xe^(-ipa/ħ) = x+a. So far you have shown that [e^(ipa/ħ)xe^(-ipa/ħ)]f(p) = af(p)+cf'(p) for any function f(p) and where c is the factor you dropped (you'll need to go back and find the value of c). You still need to show that e^(ipa/ħ)xe^(-ipa/ħ) is equivalent to x+a. But, you are almost there. You just need to rewrite the last term of af(p)+cf'(p) in terms of the operator x.

You will not need the power series.
 
TSny said:
You still need to show that e^(ipa/ħ)xe^(-ipa/ħ) is equivalent to x+a. But, you are almost there. You just need to rewrite the last term of af(p)+cf'(p) in terms of the operator x.

Okay, I'm with you now. Let me see what I can do and I'll come back with my result.
 
C=iħ. Giving us af(p) + iħd/dpf(p).

Leading to
[e^(ipa/ħ)xe^(-ipa/ħ)]f(p)= [a + iħd/dp]f(p).

∴e^(ipa/ħ)xe^(-ipa/ħ)=a + iħd/dp as required. Does this seem right?
 
  • #10
Yes, I think that's right.
 
  • #11
TSny said:
Yes, I think that's right.

Thank you so much. This makes sense. I see why I needed to bring in the f(p) function. My careless differentiation mistake and that power series confused me.
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
2
Views
4K
  • · Replies 6 ·
Replies
6
Views
10K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K