- #1
loops496
- 25
- 3
Homework Statement
Consider the quantum mechanical Hamiltonian ##H##. Using the commutation relations of the fields and conjugate momenta , show that if ##F## is a polynomial of the fields##\Phi## and ##\Pi## then
##[H,F]-i \partial_0 F##
Homework Equations
For KG we have:
##H=\frac{1}{2} \int d^3\mathbf{x}(\Pi^2 + (\nabla \Phi)^2 + m^2 \Phi^2)##
##\Phi(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}}(a_{\mathbf{p}} e^{-ipx} + a_{\mathbf{p}}^\dagger e^{ipx} )##
##\Pi(x) = \int \frac{-i d^3 \mathbf{p}}{(2\pi)^3 }\sqrt{\frac{2E_{\mathbf{p}}}{2}}(a_{\mathbf{p}} e^{-ipx} + a_{\mathbf{p}}^\dagger e^{ipx} )##
##[\Phi(t,\mathbf{x}),\Pi(t,\mathbf{y})]=i\delta^{(3)}(\mathbf{x}-\mathbf{y})##
##\Phi(x) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}}(a_{\mathbf{p}} e^{-ipx} + a_{\mathbf{p}}^\dagger e^{ipx} )##
##\Pi(x) = \int \frac{-i d^3 \mathbf{p}}{(2\pi)^3 }\sqrt{\frac{2E_{\mathbf{p}}}{2}}(a_{\mathbf{p}} e^{-ipx} + a_{\mathbf{p}}^\dagger e^{ipx} )##
##[\Phi(t,\mathbf{x}),\Pi(t,\mathbf{y})]=i\delta^{(3)}(\mathbf{x}-\mathbf{y})##
The Attempt at a Solution
[/B]
I have written ##F## as a generic two variable polynomial in ##\Phi,\;\Pi## but I don't know how to tackle that commutator, any help or hint is appreciated.