Significance of double slit experiment?

Click For Summary

Discussion Overview

The discussion centers on the significance of the double slit experiment in the context of quantum mechanics, exploring its implications for the nature of reality, determinism, and the role of observers. Participants delve into both historical and scientific perspectives, considering its foundational role in understanding wave-particle duality and the probabilistic nature of quantum phenomena.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants suggest that the double slit experiment demonstrates that outcomes are not determined until measurement occurs, raising questions about the role of the observer.
  • Others argue that the experiment illustrates the dual nature of light and matter, showing characteristics of both waves and particles, and highlights the probabilistic nature of quantum mechanics.
  • One participant posits that the experiment indicates a less deterministic universe and questions the implications for living observers.
  • Another participant emphasizes that quantum theory, particularly through the lens of entanglement, reveals fundamental randomness and stronger correlations than classical theories allow, challenging classical descriptions of nature.
  • There is a discussion about the historical context of the experiment, noting its evolution from classical physics to modern quantum theory and the inadequacy of classical descriptions for certain phenomena.
  • Some participants note that the significance of the double slit experiment is reflected in its frequent discussion within the forum, indicating its importance in the field of physics.

Areas of Agreement / Disagreement

Participants express a range of views on the implications of the double slit experiment, with no consensus reached on its significance regarding determinism or the role of observers. Multiple competing interpretations and perspectives remain present throughout the discussion.

Contextual Notes

The discussion includes references to complex concepts such as wave-particle duality, entanglement, and the probabilistic interpretation of quantum states, which may depend on specific definitions and assumptions that are not fully resolved within the conversation.

LightningInAJar
Messages
274
Reaction score
36
What is the significance of the double slit experiment? When I first learned about it I thought the human observer decided the outcome. But I guess a human observer isn't even needed and therefore a conscious mind is just as irrelevant. What does it prove that an outcome is neither one thing or the other until it is?
 
Physics news on Phys.org
Typing your question into Google got as good an answer as I could give:
In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena.
 
  • Like
Likes   Reactions: DennisN and vanhees71
Well everything is an odds game. Does it suggest the universe is less deterministic? Does it say anything regarding living observers?
 
According to quantum theory, which is the most comprehensive theory ever, which just means that there's not a single observation which contradicts it, and it was tested very carefully even in its most astonishing aspects, which all have to do with "entanglement", describing on the one hand "randomness" on a fundamental level (i.e., observables on parts of an entangled quantum system do not take determined values) but on the other hand also "stronger correlations than classically possible" when these observables are measured (the violation of the so-called Bell inequalities and related predictions of socalled "local realistic hidden-variable theories", which are realized by the classical, i.e., non-quantum, description of Nature).

The double-slit experiment is an example for the fact that certain aspects of the behavior of particles (but also macroscopic bodies) cannot be described in any way within classical physics. According to what was discovered in connection with quantum theory in 1926, e.g., an electron is neither correctly described as a classical point particle and the laws of (Newtonian or relativistic) mechanics nor as a classical field, but one needs in a sense both descriptions. In the old quantum theory (discovered by Planck, Einstein, Bohr, and others in 1900-1925) this was dubbed "wave-particle dualism", but it was always clear that this is not a consistent picture but just a set of more or less empirical rules. With modern quantum theory, discovered in 1925 by Heisenberg and then worked out in terms of three different mathematical descriptions by Born, Jordan, and Heisenberg ("matrix mechanics"), Schrödinger ("wave mechanics"), and Dirac ("transformation theory"), the inconsistencies have been resolved by Born's probability interpretation of what's called a "quantum state".

According to quantum theory it depends on how the particles are prepared initially (defining its quantum state before measurement) and what is measured in a given situation. This has nothing to do with consciousness of the observer, and no esoterical mechanism of realizing measurement results by a conscious being is needed, but just the knowledge about the interactions of the measured system with the measurement apparati, and this is part of the general physical laws as described by quantum theory.
 
  • Like
Likes   Reactions: phinds
vanhees71 said:
According to quantum theory, which is the most comprehensive theory ever, which just means that there's not a single observation which contradicts it, and it was tested very carefully even in its most astonishing aspects, which all have to do with "entanglement", describing on the one hand "randomness" on a fundamental level (i.e., observables on parts of an entangled quantum system do not take determined values) but on the other hand also "stronger correlations than classically possible" when these observables are measured (the violation of the so-called Bell inequalities and related predictions of socalled "local realistic hidden-variable theories", which are realized by the classical, i.e., non-quantum, description of Nature).

The double-slit experiment is an example for the fact that certain aspects of the behavior of particles (but also macroscopic bodies) cannot be described in any way within classical physics. According to what was discovered in connection with quantum theory in 1926, e.g., an electron is neither correctly described as a classical point particle and the laws of (Newtonian or relativistic) mechanics nor as a classical field, but one needs in a sense both descriptions. In the old quantum theory (discovered by Planck, Einstein, Bohr, and others in 1900-1925) this was dubbed "wave-particle dualism", but it was always clear that this is not a consistent picture but just a set of more or less empirical rules. With modern quantum theory, discovered in 1925 by Heisenberg and then worked out in terms of three different mathematical descriptions by Born, Jordan, and Heisenberg ("matrix mechanics"), Schrödinger ("wave mechanics"), and Dirac ("transformation theory"), the inconsistencies have been resolved by Born's probability interpretation of what's called a "quantum state".

According to quantum theory it depends on how the particles are prepared initially (defining its quantum state before measurement) and what is measured in a given situation. This has nothing to do with consciousness of the observer, and no esoterical mechanism of realizing measurement results by a conscious being is needed, but just the knowledge about the interactions of the measured system with the measurement apparati, and this is part of the general physical laws as described by quantum theory.
Thank you very much.
 
  • Like
Likes   Reactions: vanhees71
LightningInAJar said:
What is the significance of the double slit experiment?
In addition to the other answers above I would say it's one of the most important (both historically and scientifically) and well known experiments in physics. It's also a quite simple setup when you use light. It can also be made with massive particles, but this is a far more complicated setup.

As an example of its significance try searching for "double slit experiment" on this forum and you will get an amazing number of threads where it is discussed. :smile:
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 3 ·
Replies
3
Views
627
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
8K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K