Proving the Converse of the Intersecting Chords Theorem: Inside the Circle Case

  • Thread starter Thread starter disregardthat
  • Start date Start date
  • Tags Tags
    Triangles
AI Thread Summary
The discussion centers around proving the converse of the Intersecting Chords Theorem, specifically for cases where the intersection point is inside the circle. Participants clarify the conditions for triangle similarity, emphasizing that equal angles and proportional sides are necessary for proving similarity. A participant claims to have found a proof, noting that the triangles formed by intersecting chords share an angle and maintain the necessary side ratios. However, there is confusion regarding the correct expressions for these ratios, with several corrections made throughout the conversation. Ultimately, the proof hinges on demonstrating that the triangles are similar through shared angles and proportional sides.
disregardthat
Science Advisor
Messages
1,864
Reaction score
34
Hi, do anyone know a proof of this converse:

"If, A,B,C,D,E and F are points in the plane and \frac{AB}{BC}=\frac{DE}{EF}, then triangles ABC and DEF are similar."
 
Last edited:
Mathematics news on Phys.org
What is your definition of similar?
 
Oh, with similar I mean that the triangles are equiangular.

With \angle ABC = \angle DEF and \angle ABC = \angle DEF
 
Last edited:
Jarle said:
Oh, with similar I mean that the triangles are equiangular.

With \angle ABC = \angle DEF and \angle ABC = \angle DEF
Do you mean /_ABC = /_ DEF and /_BCA = /_EFD ? (You repeated yourself.)
 
Last edited:
Yes, I meant the last thing you said. (Getting late.)
 
Jarle said:
Hi, do anyone know a proof of this converse:

"If, A,B,C,D,E and F are points in the plane and \frac{AB}{BC}=\frac{DE}{EF}, then triangles ABC and DEF are similar."
No one knows a proof, because such a proof doesn’t exist.

PS
But in the case AB:BC:CA = DE:EF:FD, proof is trivial
 
Forgot to mention that they share the angle between the sides AB and BC, and DE and EF.

Oh, and the expression should not look like that either...

It's \frac{AB}{DE}=\frac{EF}{BC}

EDIT: Anyway, I have proven it now...
 
Last edited:
Jarle said:
Forgot to mention that they share an angle.
Still not enough for similarity... :smile:

If you forget as well to mention that equal angles are /_ABC and /_ DEF, proof is trivial.
If other angles, proof doesn't exist.
 
There has been to many faults here. I will sum it up and see what I find out!
 
  • #10
Jarle said:
Forgot to mention that they share the angle between the sides AB and BC, and DE and EF.
Oh, and the expression should not look like that either...

It's \frac{AB}{DE}=\frac{EF}{BC}

EDIT: Anyway, I have proven it now...
After your editions (bolded) proof is not possible

It must be

\frac{AB}{DE}=\frac{BC}{EF}

OR

\frac{AB}{BC}=\frac{DE}{EF}
 
Last edited:
  • #11
Ok, I have summed it up now. I am trying to prove the converse of the intersecting chords theorem, in the case where the point of intersection is inside the circle...

We have that the line segments AB and CD meet at X. So the opposite angles at X are equal. We translate the triangles to the triangle with sides XAD, XCB and with AB and DC joined. Now the angle at X is a, and \frac{XA}{XC}=\frac{XD}{XB}. This is a sufficient condition for the triangles XAC and XDB to be similar, as corresponding sides have the same ratio, and the included angle is equal. Thus is the angle XDB equal to the angle XAC, and by the converse of the angles subtended by the same arc theorem, ACBD are concyclic points, so AB and CD are chords in a circle. Does this look ok to you? The other cases of the converse goes something in the same way.
 
Last edited:

Similar threads

Replies
4
Views
1K
Replies
5
Views
2K
Replies
11
Views
6K
Replies
6
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top