MHB Simple Unitial Rings .... centre is a field .... ? ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Field Rings
Click For Summary
The discussion focuses on the implications of a nonzero central element in simple unital rings, specifically referencing Matej Bresar's example on finite dimensional division algebras. It clarifies that if a nonzero central element \( c \) satisfies \( cA = A \), then \( c \) must be invertible. This is demonstrated by showing that the identity element \( 1 \) can be expressed as \( cd \) for some \( d \in A \), and since \( c \) is central, it commutes with \( d \). The conclusion drawn is that the existence of such a \( d \) confirms the invertibility of \( c \). The discussion effectively highlights the relationship between central elements and invertibility in the context of simple unital rings.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Matej Bresar's book, "Introduction to Noncommutative Algebra" and am currently focussed on Chapter 1: Finite Dimensional Division Algebras ... ...

I need help with some remarks of Bresar in Example 1.21 on simple unital rings ...

Example 1.21 reads as follows:
View attachment 6250In the above text from Bresar, we read the following:

" ... ... Indeed, if $$c$$ is a nonzero central element, then $$cA$$ must be, as a nonzero idea of $$A$$, equal to $$A$$. This implies that $$c$$ is invertible. ... ... "Can someone please show me exactly why it is the case that $$cA$$ being equal to $$A$$ implies that $$c$$ is invertible ... Help will be appreciated ...

Peter
 
Physics news on Phys.org
Since $1 \in A$, then $1\in cA$. Thus, there is a $d\in A$ such that $1 = cd$. Since $c$ is central, $cd = dc$. So $cd = 1 = dc$, showing that $c$ is invertible.
 
Euge said:
Since $1 \in A$, then $1\in cA$. Thus, there is a $d\in A$ such that $1 = cd$. Since $c$ is central, $cd = dc$. So $cd = 1 = dc$, showing that $c$ is invertible.

Thanks Euge ... appreciate your help ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K