thomas49th
- 645
- 0
Homework Statement
Using the substitution u² = 2x - 1, or otherwise, find the exact value of
\int^{5}_{1} \frac{3x}{\sqrt{2x-1}}dx
The Attempt at a Solution
Right let's rearrange u in terms of x (i think that's how you say it):
x = \frac{u^{2} - 1}{2}And now get an expression for dx
u = (2x-1)^{\frac{1}{2}}
use the chain rule on it to give
\frac{dx}{du} (2x-1)^{-\frac{1}{2}}
= dx = \frac{du}{(2x-1)^{-\frac{1}{2}}}
Right now substitute that in
\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}
now according to the mark scheme
\int^{5}_{1} \frac{3\frac{u^{2} - 1}{2}}{u}\frac{du}{(2x-1)^{-\frac{1}{2}}}
can be simplified
\int^{5}_{1} \frac{3u^{2} - 3}{2u}\frac{du}{(2x-1)^{-\frac{1}{2}}}
shouldn't the bit here:
\frac{3u^{2} - 3}{2u}
be
\frac{3u^{2} - 3}{6u}
Last edited: