Hello to all,
Dear JesseM, in post 7 you wrote ;
One key point to understand is that in relativity all frames must agree about local events which occur at a single point in space and time. So, you can't have a situation where one frame predicts that two light rays hit an observer at the same moment in time and another doesn't, because this would involve a disagreement about local events (imagine that the observer has a bomb with light detectors on either side that will cause the bomb to explode if light hits both detectors within a very short time window--if different frames could disagree on whether the bomb exploded or not, that would essentially make different frames into parallel universes rather than just different ways of assigning space and time coordinates to events). That means that if the ground frame predicts the light hits the observer at the center of the train at different moments, then the train rest frame must say the same thing. But how can this be, given that both strikes happened at the same distance from the observer at the center of the train in the train rest frame, and the observer is at rest in this frame? The answer is that the strikes must have occurred at different times in this frame, so even though the light from each strike takes the same amount of time to reach him after the moment the strike occurred, since the strikes happened at different moments the light from each strike reaches him at different moments too.
I’m having difficulty following this, especially with the bolded segments. Imo, the only time we can use/say that the train’s frame is at rest is for the very short moment both strikes hit the train (later shown to be simultaneous, as confirmed by the stationary observer situated precisely at an equidistant location from the train’s back and front when the strikes hit), and that would be what you refer to as the single point in space and time.
At that point, if you take an instantaneous snapshot of the scene when the strikes hit, both passenger and ground observer, in their own respective frames, are located exactly at the same distance from each end of the train, while being perfectly aligned orthogonally. Here, if we could remain at rest and let the flashes follow their course, everyone would be happy to see that all happens simultaneously, give mirrors to the ground observer and synchronised detector/clocks to the passenger and he will observe that both reflected light flashes stop the clocks simultaneously.
Let it roll on and the reflected light waves from both strike impact locations will travel, at c, eventually being perceived simultaneously by the ground observer, who is stationary with respect to the strikes, while the passenger will see a slight difference because, while the light waves travel at c, he is moving away from the back / towards the front strike locations, making it appear that they were not simultaneous when indeed they were.
The ground observer’s predictions are not for the train’s rest frame, they are for the train’s frame as it is in motion. So, I think that the agreement about preserving local events when viewed from the passenger’s perspective should be that, although they did, she sees that the strike flashes have not reached the stationary ground observer simultaneously, keeping in line with observations made in her own frame. This will always appear to be true as the passenger is in motion with respect to the reflected light from the ground observer, exactly as it was inside the train with respect to the original strikes.
Does that make sense?
Regards,
VE