Simultaneous primality and Dirichlet's Theorem on Arthm. Progressions?

  • Thread starter Thread starter tuttlerice
  • Start date Start date
  • Tags Tags
    Theorem
tuttlerice
Messages
28
Reaction score
0
Hi. I'm a music theorist writing a music-related paper that is math heavy and I'm a little in over my head.

I know that according to Dirichlet's theorem on arithmetic progressions, there are infinitely many primes in the form ax+b when a and b are coprime. What I am wondering is if there is a theorem that says given ax+b and cx+d where a,b are coprime and c,d are coprime, ax+b and cx+d are simultaneously prime infinitely often?

The best I could come up with trying to prove it myself is this, and I don't claim this is a valid proof:

ax+b and cx+d are both prime infinitely often if it is the case that ax+b+cx+d equals some p+q, where p, q are prime, infinitely often. For the purposes of my paper I can also stipulate that a and c are both even and b and d are both odd.

ax+b+cx+d = x(a+c)+b+d = x(a+c)-1 + b+d+1.

The expression x(a+c)-1 yields primes infinitely often per Dirichlet because a+c is coprime with 1 (as all numbers are coprime with 1). The expression b+d+1 yields primes infinitely often because b+d is even, and even numbers are 1 less than a prime infinitely often. Therefore, ax+b+cx+d = primes p + q infinitely often.

At least that's my train of thought. But I would dearly love for there to be an existing theorem that covers this. And please forgive me if my own "proof" is faulty and naive--- I'm just a music theorist, not a math professor!Robert Gross
 
Last edited:
Physics news on Phys.org
I also apologize if this is the wrong forum. I thought this was the general number theory forum.
 
If you get the proof right, you will have also proved the twin primes conjecture as a special case. Best of luck!
 
Wow, you're right!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top