Sinusoidal steady state analysis using Laplace transform

Click For Summary

Discussion Overview

The discussion revolves around the analysis of a circuit using Laplace transforms, specifically aiming to reproduce a solution derived from phasor analysis. The focus is on the steady-state response of the circuit and the relationship between the two methods of analysis.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • The original poster presents a circuit analysis using Laplace transforms and derives an expression for the current, noting a discrepancy with a solution obtained via phasor analysis.
  • Some participants propose that the steady-state solution should match the form of the source voltage, suggesting that the original poster's final expression may have a phase difference due to a possible mistake in interpreting sine and cosine functions.
  • One participant expresses confidence that correcting the sine to cosine will resolve the phase difference issue between the two approaches.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the original poster's approach or the professor's solution. There is a disagreement regarding the interpretation of the steady-state solution, specifically whether it should be expressed in terms of sine or cosine.

Contextual Notes

The discussion highlights potential confusion regarding the relationship between the forms of the source voltage and the resulting steady-state current, as well as the implications of using different trigonometric functions in the analysis.

Wrichik Basu
Science Advisor
Insights Author
Gold Member
Messages
2,180
Reaction score
2,690
Homework Statement
Find ##i_x(t)## in the given circuit at the steady state.
Relevant Equations
Laplace transforms for circuit elements. $$\begin{align}
t\mathrm{-domain} &\rightarrow s\mathrm{-domain}\\
R &\rightarrow R \\
L &\rightarrow sL \\[0.9em]
C &\rightarrow \dfrac{1}{sC}\\[0.9em]
\cos \omega t &\rightarrow \dfrac{s}{s^2 + \omega^2} \\[0.9em]
\sin \omega t &\rightarrow \dfrac{\omega}{s^2 + \omega^2}
\end{align}$$
##\require{physics}##The given circuit is this:

1695896537667.png

The question is taken from this video. The Professor has solved it using Phasor analysis, the final solution being $$\begin{equation}
i_x(t) = 7.59 \sin \qty( 4t + 108.4^\circ )~\mathrm{amps}.
\end{equation}$$My aim, however, is to use Laplace transform to reproduce this solution.

Step 1 is to transform all the circuit elements from the time domain to the frequency domain. The transformed circuit looks like:

1695897060600.png

At node A,$$\begin{align}
&\phantom{implies} \dfrac{\dfrac{20 s}{s^2 + 16} - V_A(s)}{10} - I_x(s) - \dfrac{V_A - V_B}{s} = 0 \nonumber \\[0.8em]
&\implies \dfrac{2s}{s^2 + 16} - \dfrac{V_A}{10} - \dfrac{V_A}{10/s} - \dfrac{V_A - V_B}{s} = 0.\label{eqn1}
\end{align}$$
At node B,$$\begin{align}
\dfrac{V_A - V_B}{s} + 2\dfrac{V_A}{10/s} - \dfrac{V_B}{s/2} = 0.\label{eqn2}
\end{align}$$
Solving equations##~\eqref{eqn1}## and ##\eqref{eqn2}## yield $$\begin{align}
V_A(s) &= \dfrac{60 s^2}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 2)} \\[0.8em]
\implies I_x(s) &= \dfrac{6s^3}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 2)}.
\end{align}$$
Time to take the inverse Laplace transform. $$\begin{align}
I_x(s) &= \dfrac{6s^3}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 20)} \nonumber \\[1em]
&= \dfrac{\dfrac{42}{5}s + 36}{s^2 + 3s + 20} - \dfrac{\dfrac{12}{5}s + \dfrac{144}{5}}{s^2 + 16} \nonumber \\[1em]
&= \dfrac{\dfrac{42}{5}\qty( s + 1.5 )}{\qty( s + 1.5 )^2 + \dfrac{71}{4}}
+ \dfrac{234}{5\sqrt{71}} \dfrac{\sqrt{71}/2}{\qty( s + 1.5 )^2 + \dfrac{71}{4}} - \dfrac{12}{5} \qty[ \dfrac{s}{s^2 + 16} + 3 \dfrac{4}{s^2 + 16} ] \nonumber\\[1em]
\implies i_x (t) &= \dfrac{42}{5} \exp^{-1.5t} \qty[ \cos \qty( \dfrac{\sqrt{71}}{2}t ) + \dfrac{39 \sqrt{71}}{497} \sin \qty( \dfrac{\sqrt{71}}{2}t ) ] - \dfrac{12}{5} \qty[ \cos (4t) + 3 \sin (4t) ].
\end{align}$$
At steady state, i.e. when ##t \rightarrow \infty,## the exponential part vanishes, so I am left with only $$\begin{equation}
i_x (t) = - \dfrac{12}{5} \qty[ \cos (4t) + 3 \sin (4t) ]~\mathrm{amps}. \label{eqn:ixt_final}
\end{equation}$$

I am not sure how to proceed from here to arrive at the same equation that was derived in the video.

If I plot the two values, I get

1695913660053.png

which is just a phase difference. I am not sure where I went wrong. Any leads will be helpful.
 
Last edited:
Physics news on Phys.org
Since your source voltage is of the form ##20 \cos(4 t)##, I believe that your steady state answer should also be in that form:
$$ i_x(t) = 7.59 \cos \qty( 4t + 108.4^\circ )~\mathrm{amps}$$
So I think that your professor mistook the sin for cos. This, will I believe solve your phase difference issues between the phasor approach and the Laplace approach.
 
  • Like
  • Love
Likes   Reactions: berkeman and Wrichik Basu
gneill said:
Since your source voltage is of the form ##20 \cos(4 t)##, I believe that your steady state answer should also be in that form:
$$ i_x(t) = 7.59 \cos \qty( 4t + 108.4^\circ )~\mathrm{amps}$$
So I think that your professor mistook the sin for cos. This, will I believe solve your phase difference issues between the phasor approach and the Laplace approach.
That sure does solve the issue. Thank you!
 
  • Like
Likes   Reactions: berkeman
You're very welcome!
 

Similar threads

Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 86 ·
3
Replies
86
Views
14K
  • · Replies 61 ·
3
Replies
61
Views
12K
  • · Replies 17 ·
Replies
17
Views
3K