samalkhaiat
Science Advisor
- 1,801
- 1,199
vanhees71 said:A manifest covariant formalism is provided by Dirac spinors rather than Weyl spinors!
What is it non covariant in the following equations?
( \sigma^{ \mu } )_{ A \dot{ B } } \partial_{ \mu } \chi^{ A } = m \bar{ \eta }_{ \dot{ B } } ,
( \sigma^{ \mu } )_{ A \dot{ B } } \partial_{ \mu } \eta^{ A } = m \bar{ \chi }_{ \dot{ B } } .
Irreducible representations of the Lorentz group know absolutely nothing about Dirac’s bispinors. In fact, Dirac bispinor is a Parity invariant, 4-Dimensional Reducible Representation of SO( 1 , 3 ) + \mbox{ Parity }, i.e.,
\psi = \left( \begin{array}{c} \chi_{ A } \\ \bar{ \eta }^{ \dot{ A } } \end{array} \right) \sim ( \frac{ 1 }{ 2 } , 0 ) \oplus ( 0 , \frac{ 1 }{ 2 } ) .
Here is a question to the readers. What prevents us from representing Dirac bispinor by the ( 1/2 , 0 ) \oplus ( 1/2 , 0 ) or ( 0 , 1/2 ) \oplus ( 0 , 1/2 ) Reducible Representations of SO( 1 , 3 ) + \mbox{ Parity }?
Sam