This thread shows how easily one gets into troubles if one confuses TENSOR CONTRACTION, i.e., A_{ a r } B^{ c r }, with the corresponding MATRIX MULTIPLICATION, i.e., A_{ a r } B^{ r c }. The two expressions become identical, if and only if the followings are true:
1) the first and the second index both belong to identical or equivalent representations of the group in the question, and
2) B^{ c r } = B^{ r c }.
We will see that none of these conditions is satisfied in SL( 2 , C ). But, before doing the tensor notations of SL( 2 , C ), I would like to derive the relation between the Lorentz transformation,
x^{ \mu } \rightarrow \Lambda^{ \mu }{}_{ \nu } \ x^{ \nu } , \ \ \Lambda \in SO( 1 , 3 ) , \ \ (1)
and the corresponding SL( 2 , C ) transformation of the Hermitian matrix x_{ \mu } \sigma^{ \mu } = \eta_{ \mu \tau } \ x^{ \mu } \ \sigma^{ \tau }:
<br />
\eta_{ \mu \tau } \ x^{ \mu } \ \sigma^{ \tau } \rightarrow \eta_{ \nu \tau } \ x^{ \nu } \ g \ \sigma^{ \tau } \ g^{ \dagger } , \ \ ( g , g^{ \dagger } ) \in SL( 2 , C ) \ (2)<br />
I choose to define
<br />
\eta^{ \tau \mu } \ \sigma_{ \mu } = \sigma^{ \tau } \equiv ( I , \vec{ \sigma } ) ,<br />
I also define
<br />
\eta^{ \tau \mu } \ \bar{ \sigma }_{ \mu } = \bar{ \sigma }^{ \tau } \equiv ( I , - \vec{ \sigma } ) .<br />
Notice that \sigma_{ \mu } and \bar{ \sigma }^{ \nu } are the same matrices. However, writing \sigma_{ \mu } = \bar{ \sigma }^{ \mu } would mess up your covariant expressions (some thing that you would not want to do). So, to stay out of troubles we will treat \sigma^{ \mu } and \bar{ \sigma }^{ \nu } as two independent objects.
Now, by direct matrix multiplication, we can easily verify that
\mbox{ Tr } ( \sigma^{ \tau } \bar{ \sigma }^{ \rho } ) = 2 \ \eta^{ \tau \rho } . \ \ (3)
Contracting both side of Eq(1) with \eta_{ \mu \tau } \sigma^{ \tau } gives
\eta_{ \mu \tau } \ x^{ \mu }\ \sigma^{ \tau } \rightarrow \Lambda^{ \mu }{}_{ \nu } \ \eta_{ \mu \tau } \ x^{ \nu } \ \sigma^{ \tau } . \ \ \ (4)
Comparing the RHS of Eq(4) with that of Eq(2) leads to
\Lambda^{ \mu }{}_{ \nu } \ \eta_{ \mu \tau } \ \sigma^{ \tau } = \eta_{ \nu \tau } \ g \ \sigma^{ \tau } \ g^{ \dagger } .
Multiplying both sides by \bar{ \sigma }^{ \rho } and taking the trace, we find (using Eq(3)) that
\Lambda^{ \mu }{}_{ \nu } \ \eta_{ \mu \tau } ( 2 \ \eta^{ \tau \rho }<br />
) = \mbox{ Tr } (g \ \eta_{ \nu \tau } \ \sigma^{ \tau } \ g^{ \dagger } \ \bar{ \sigma }^{ \rho } ) ,
or
2 \Lambda^{ \mu }{}_{ \nu } \ \delta^{ \rho }_{ \mu } = \mbox{ Tr } ( g \ \sigma_{ \nu } \ g^{ \dagger } \ \bar{ \sigma }^{ \rho } ) .
Thus
\Lambda^{ \rho }{}_{ \nu } ( g ) = \frac{ 1 }{ 2 } \mbox{ Tr } ( \bar{ \sigma }^{ \rho } \ g \ \sigma_{ \nu } \ g^{ \dagger } ).
***********
Tensor Contraction & Trace in SL( 2 , C)
The matrices \sigma^{ \mu } behave like mixed spinor-tensors indexed by A = 1,2 and \dot{B} = \dot{1}, \dot{2} which label the fundamental and anti-fundamental (conjugate) representations respectively,
( \sigma^{ \mu } )_{ A \dot{B} } = ( I , \vec{ \sigma } )_{ A \dot{B} } .
Complex conjugation turns undotted indices into dotted ones and vice versa. For example, the complex conjugate of the spinor-tensor \Psi_{ A B \dot{C}} is given by
\overline{ \Psi_{ A B \dot{C} } } = \bar{ \Psi }_{ \dot{A} \dot{B} C } .
Therefore, the hermiticity of \sigma^{ \mu } means, in the SL( 2 , C ) index notations, that
\overline{ ( \sigma^{ \mu } )_{ A \dot{B} } } \equiv ( \bar{ \sigma }^{ \mu } )_{ \dot{A} B } = ( \sigma^{ \mu } )_{ B \dot{A} } . \ \ (5)
Raising and lowering of the indices is done here by the invariant (metric) spinors
\epsilon_{ A B } = \epsilon^{ A B } = \epsilon_{ \dot{A} \dot{B} } = <br />
\epsilon^{ \dot{A} \dot{B} } , \ \ (6a)
which are the 2-dimensional Levi-Civita symbol, i.e. ,
<br />
\epsilon_{ A B } = - \epsilon_{ B A } = \left( \begin{array} {rr} 0 & 1 \\ -1 & 0 \end{array} \right) . \ \ (6b)<br />
They satisfy the relations
\epsilon_{ A B } \epsilon^{ C B } = \epsilon^{ C }{}_{ A } = - \epsilon_{ A }{}^{ C } = \delta^{ C }_{ A } . \ \ (6c)
The invariance of the metric spinor \epsilon_{ A B } under SL( 2 , C), which is a necessary condition for the consistency of the relations (6), follows from the definition of a determinant
\det | g | \epsilon_{ A B } = g_{ A }{}^{ C } \ g_{ B }{}^{ D } \ \epsilon_{ C D } ,
and the fact that, for all g \in SL( 2 , C ), \det | g | = 1.
The invariant trace of tensors is, therefore, obtained by contracting all indices with the appropriate spinor metric. For example, the trace of the tensor T^{ A B } is given by
\mbox{Tr}_{ sl(2,C) } ( T ) = \epsilon_{ A B } T^{ A B } . \ \ \ (7)
It is clear from this that a traceless matrix, if interpreted as tensor, needs not be traceless tensor. For instance, as an anti-symmetric matrix, the Levi-Civita symbol is traceless, i.e. ,
\mbox{Tr}_{ M } ( \epsilon ) = 0 ,
while the tensor \epsilon^{ A B }, as seen from Eq(7) and Eq(6c), has a non-vanishing trace,
\mbox{Tr}_{ sl(2,C) } ( \epsilon ) = \epsilon^{ A }{}_{ A } = - \epsilon_{ A }{}^{ A } = 2 .
Another example is the Pauli matrices \sigma^{ i } themselves. While \mbox{Tr}_{ M } ( \sigma^{ i } ) = 0, \mbox{Tr}_{ sl(2,C) } ( \sigma^{ i } ) does not exist (not even defined). However, the tensor ( \sigma^{ \mu } \sigma^{ \nu }<br />
)_{ A B } has a trace given by
<br />
\mbox{Tr}_{ sl(2,C) } ( \sigma^{ \mu } \sigma^{ \nu } ) = ( \sigma^{ \mu } )_{ A \dot{ B } } ( \sigma^{ \nu } )^{ A \dot{ B } } = 2 \eta^{ \mu \nu } . \ \ \ (8)<br />
This follows directly from the Dirac algebra (upon contracting the indices A and C):
<br />
\{ \sigma^{ \mu } , \sigma^{ \nu } \}^{ C }_{ A } \equiv ( \sigma^{ \mu} )_{ A \dot{ B } } ( \sigma^{ \nu } )^{ C \dot{ B } } + ( \sigma^{ \nu } )_{ A \dot{ B } } ( \sigma^{ \mu } )^{ C \dot{ B } } = 2 \ \delta^{ C }_{ A } \eta^{ \mu \nu } .<br />
The hermiticity condition Eq(5) allows us to rewrite the trace in Eq(8) as that of matrix multiplication
<br />
\mbox{Tr}_{ sl(2,C) } ( \sigma^{ \mu } \sigma^{ \nu } ) = ( \bar{ \sigma }^{ \mu } )_{ \dot{ B } A } ( \sigma^{ \nu } )^{ A \dot{ B } } = \mbox{Tr}_{ M } ( \bar{ \sigma }^{ \mu } \sigma^{ \nu } ) .<br />
Let us now show that the complex conjugation defined in Eq(5) is consistent with our (index free) definition of \bar{ \sigma }^{ \mu } = ( I , - \vec{ \sigma } ). Consider
( \sigma^{ \mu } )^{ A \dot{ B } } = \epsilon^{ A C } \ \epsilon^{ \dot{ B } \dot{ D } } \ ( \sigma^{ \mu } )_{ C \dot{ D } } ,
now take the complex conjugate of both sides,
<br />
\overline{ ( \sigma^{ \mu } )^{ A \dot{ B } } } = \overline{ \epsilon^{ A C } } \ \overline{ \epsilon^{ \dot{ B } \dot{ D } } } \ \overline{ ( \sigma^{ \mu } )_{ C \dot{ D } } } .<br />
Using the rule of complex conjugation and Eq(5), we find
<br />
( \bar{ \sigma }^{ \mu } )^{ \dot{ A } B } = - \epsilon^{ B D } \ ( \sigma^{ \mu } )_{ D \dot{ C } } \ \epsilon^{ \dot{ C } \dot{ A } } = - ( \epsilon \ \sigma^{ \mu } \ \epsilon )^{ B \dot{ A } } .<br />
Therefore
\bar{ \sigma }^{ \mu } = - ( \epsilon \ \sigma^{ \mu } \ \epsilon )^{ t } .
Since \epsilon^{ t } = \epsilon^{ -1 } = - \epsilon, then
\bar{ \sigma }^{ \mu } = - \epsilon \ ( \sigma^{ \mu } )^{ t } \ \epsilon = ( I , - \vec{ \sigma } ) .
I finish this post by writing the completeness relations with respect to the trace
\eta_{ \mu \nu } \ ( \sigma^{ \mu } )_{ A \dot{ B } } \ ( \sigma^{ \nu } )^{ C \dot{ D } } = 2 \ \delta^{ C }_{ A } \ \delta^{ \dot{ D } }_{ \dot{ B } } ,
which follow from
\eta_{ \mu \nu } \ ( \sigma^{ \mu } )_{ A \dot{ B } } \ ( \sigma^{ \nu } )_{ C \dot{ D } } = 2 \ \epsilon_{ A C } \ \epsilon_{ \dot{ B } \dot{ D } } .
Sam