funcalys
- 30
- 1
We have that
\int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}\int^{1}_{t}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}[arcsin(x)]^{1}_{t}=\frac{\pi}{2}
However, I think \int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}} should equal to lim_{\stackrel{}{t \rightarrow 1^{-}}}\int^{t}_{0}\frac{1}{\sqrt{1-x^{2}}}
since f is not continuous at 1, not 0.
\int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}\int^{1}_{t}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}[arcsin(x)]^{1}_{t}=\frac{\pi}{2}
However, I think \int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}} should equal to lim_{\stackrel{}{t \rightarrow 1^{-}}}\int^{t}_{0}\frac{1}{\sqrt{1-x^{2}}}
since f is not continuous at 1, not 0.