We have that(adsbygoogle = window.adsbygoogle || []).push({});

[itex]\int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}\int^{1}_{t}\frac{1}{\sqrt{1-x^{2}}}=lim_{\stackrel{}{t \rightarrow 0^{+}}}[arcsin(x)]^{1}_{t}=\frac{\pi}{2}[/itex]

However, I think [itex]\int^{1}_{0}\frac{1}{\sqrt{1-x^{2}}}[/itex] should equal to [itex]lim_{\stackrel{}{t \rightarrow 1^{-}}}\int^{t}_{0}\frac{1}{\sqrt{1-x^{2}}}[/itex]

since f is not continuous at 1, not 0.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Small confusion about an improper integral example.

**Physics Forums | Science Articles, Homework Help, Discussion**