smallphi said:Luckily, this equation doesn't contain the function y(x) itself, only its derivatives. So denote y'(x) = f(x), you get an equation of first order for f(x), which is solvable by simplle integration. Then go back and solve y'(x) = f(x) for y(x).
younginmoon said:Thanks!
Starting with v=y', the original equation becomes
v + A v^3 = B x^C (A, B & C are constants) and the solution is composed of complimentary and particular integrals. But, how do you handle with the cubic term (v^3)
in both integrals? Or is there another solution method? (younginmoon)