IridescentRain
- 16
- 0
Hello.
I don't know how to prove that a certain function is a solution to the scalar wave equation in cylindrical coordinates.
The scalar wave equation is
\left(\nabla^2+k^2\right)\,\phi(\vec{r})=0,which in cylindrical coordinates is
\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\phi}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2\phi}{\partial \varphi^2}+\frac{\partial^2\phi}{\partial z^2},where the translation between cartesian and cylindrical coordinates is given by \rho=\sqrt{x^2+y^2}, \varphi=\arctan\left(y/x\right), z=z.
According to Scattering of electromagnetic waves: theories and applications by Tsang L, Kong J A and Ding K-H, a solution to this is the function
\phi(\vec{r})=J_n\left(k_\rho \rho\right)\,e^{i\left(n \varphi+k_z z\right)},where k^2=k_\rho^2+k_z^2, n\in\mathbb{Z}, and J_n is the first-kind Bessel function of the n-th order.
I know very little about Bessel functions. I do know, however, that
J_n(x)=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\Gamma(m+n+1)}\left(\frac{x}{2}\right)^{2m+n},which, by writing \Gamma(m+n+1) explicitly, becomesJ_n(x)=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\int_0^{\infty} t^{m+n}\,e^{-t}\,dt}\left(\frac{x}{2}\right)^{2m+n}.I also know that
\frac{d}{dx}J_n(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right].
So I set out to prove that this is indeed a solution to the wave equation in cylindrical coordinates. However, I didn't get very far. Here's what I did:
\frac{\partial\phi}{\partial\rho}=\frac{k_\rho}{2}\left[J_{n-1}(k_\rho \rho)-J_{n+1}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}\Rightarrow\left(\nabla^2+k^2\right)\,\phi=\frac{1}{\rho}\frac{\partial}{\partial \rho}\left[\frac{k_\rho \rho}{2}J_{n-1}(k_\rho \rho)-\frac{k_\rho \rho}{2}J_{n+1}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}-\left(\frac{n^2}{\rho^2}+k_z^2\right)\,J_n(k_\rho \rho)\,e^{i\,(n \varphi+k_z z)}\Rightarrow\left(\nabla^2+k^2\right)\,\phi=\left[\frac{k_\rho^2}{4}J_{n-2}(k_\rho \rho)+\frac{k_\rho}{2\rho}J_{n-1}(k_\rho \rho)-\left(\frac{k_\rho^2}{2}+k_z^2+\frac{n^2}{\rho^2}\right)\,J_n(k_\rho \rho)-\frac{k_\rho}{2\rho}J_{n+1}(k_\rho \rho)-\frac{k_\rho^2}{4}J_{n+2}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}.However, I don't know where to go from here.
If I do
\frac{\partial\phi}{\partial\rho}=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\int_0^{\infty} t^{m+n}\,e^{-t}\,dt}\left(\frac{k_\rho}{2}\right)^{2m+n}\,(2m+n)\,\rho^{2m+n-1}\,e^{i\,(n \varphi+k_z z)},I get stuck as well.
How should I approach the problem of proving that the above function \phi(\vec{r}) is a solution to the wave equation in cylindrical coordinates?
Thanks! :)
I don't know how to prove that a certain function is a solution to the scalar wave equation in cylindrical coordinates.
The scalar wave equation is
\left(\nabla^2+k^2\right)\,\phi(\vec{r})=0,which in cylindrical coordinates is
\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\phi}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2\phi}{\partial \varphi^2}+\frac{\partial^2\phi}{\partial z^2},where the translation between cartesian and cylindrical coordinates is given by \rho=\sqrt{x^2+y^2}, \varphi=\arctan\left(y/x\right), z=z.
According to Scattering of electromagnetic waves: theories and applications by Tsang L, Kong J A and Ding K-H, a solution to this is the function
\phi(\vec{r})=J_n\left(k_\rho \rho\right)\,e^{i\left(n \varphi+k_z z\right)},where k^2=k_\rho^2+k_z^2, n\in\mathbb{Z}, and J_n is the first-kind Bessel function of the n-th order.
I know very little about Bessel functions. I do know, however, that
J_n(x)=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\Gamma(m+n+1)}\left(\frac{x}{2}\right)^{2m+n},which, by writing \Gamma(m+n+1) explicitly, becomesJ_n(x)=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\int_0^{\infty} t^{m+n}\,e^{-t}\,dt}\left(\frac{x}{2}\right)^{2m+n}.I also know that
\frac{d}{dx}J_n(x)=\frac{1}{2}\left[J_{n-1}(x)-J_{n+1}(x)\right].
So I set out to prove that this is indeed a solution to the wave equation in cylindrical coordinates. However, I didn't get very far. Here's what I did:
\frac{\partial\phi}{\partial\rho}=\frac{k_\rho}{2}\left[J_{n-1}(k_\rho \rho)-J_{n+1}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}\Rightarrow\left(\nabla^2+k^2\right)\,\phi=\frac{1}{\rho}\frac{\partial}{\partial \rho}\left[\frac{k_\rho \rho}{2}J_{n-1}(k_\rho \rho)-\frac{k_\rho \rho}{2}J_{n+1}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}-\left(\frac{n^2}{\rho^2}+k_z^2\right)\,J_n(k_\rho \rho)\,e^{i\,(n \varphi+k_z z)}\Rightarrow\left(\nabla^2+k^2\right)\,\phi=\left[\frac{k_\rho^2}{4}J_{n-2}(k_\rho \rho)+\frac{k_\rho}{2\rho}J_{n-1}(k_\rho \rho)-\left(\frac{k_\rho^2}{2}+k_z^2+\frac{n^2}{\rho^2}\right)\,J_n(k_\rho \rho)-\frac{k_\rho}{2\rho}J_{n+1}(k_\rho \rho)-\frac{k_\rho^2}{4}J_{n+2}(k_\rho \rho)\right]\,e^{i\,(n \varphi+k_z z)}.However, I don't know where to go from here.
If I do
\frac{\partial\phi}{\partial\rho}=\sum_{m=0}^{\infty}\frac{(-1)^m}{m!\,\int_0^{\infty} t^{m+n}\,e^{-t}\,dt}\left(\frac{k_\rho}{2}\right)^{2m+n}\,(2m+n)\,\rho^{2m+n-1}\,e^{i\,(n \varphi+k_z z)},I get stuck as well.
How should I approach the problem of proving that the above function \phi(\vec{r}) is a solution to the wave equation in cylindrical coordinates?
Thanks! :)