A Solution to the wave equation in Rindler coordinates

Wise Owl
Messages
1
Reaction score
0
I have been reading these notes on Rindler coordinates for an accelerated observer. In Rindler coordinates, the hyperbolic motion of the observer is expressed through the coordinate transformation
$$t=a^{-1}e^{a{{\xi}}}\sinh a{\eta}\\
{}x=a^{-1}e^{a{{\xi}}}\cosh a{\eta}.$$On a space-time diagram, the null light rays act as a horizon for the observer. This is because light sent from outside the observer's "Rindler wedge" can never catch up.

Now let's consider the wave equation. In regular Minkowski space, the equation reads $$\square\,\varphi = \bigg(\frac{{\partial}^2}{{\partial}t^2}-\frac{{\partial}^2}{{\partial}x^2}\bigg)\,\varphi=0$$ with a general solution corresponding to plane waves $$\varphi = e^{\pm ikx-i{\omega}t}.$$ In Rindler coordinates, the wave equation is $$\square\,\varphi = e^{-2a \xi}\bigg(\frac{{\partial}^2}{{\partial}\eta^2}-\frac{{\partial}^2}{{\partial}\xi^2}\bigg)\,\varphi=0$$ Since this equation has the same form of that for Minkowski space, I would expect the solutions to be the same. However, in the notes, the solution depends on what region of space-time is being considered. Specifically, the given solution is (see eqs. (17), (18) )
$$^R\varphi =
\begin{cases}
e^{ik\xi -i{\omega}{\eta}} & \text{in }R \\
0 & \text{in }L
\end{cases}\\
^L\varphi =
\begin{cases}
0 & \text{in }R \\
e^{ik\xi +i{\omega}{\eta}} & \text{in }L
\end{cases}
$$where $$^R\varphi$$ and $$^L\varphi$$ correspond to the solutions in R and L, the right and left "Rindler wedges", respectively. The sum of these solutions is the general solution to the wave equation over the entire space-time.

My question:


1. Why does the solution need to be broken down into these L and R wedges? Since the wave equation is identical to that for regular Minkowski space, why wouldn't the solution be identical as well?
2. How are the signs chosen for each wedge? For instance, why does the right wedge have $$e^{ik\xi \textbf{-}i{\omega}{\eta}}$$ while the left wedge has $$e^{ik\xi \textbf{+}i{\omega}{\eta}}\,\,?$$
 
Physics news on Phys.org
In both cases, you haven't written the general solution, what you've written is a complete set of particular solutions, two different sets in Minkowski and Rindler coordinates. The general solution of the two-dimensional wave equation can be written f(x - t) + g(x + t) where f and g are arbitrary functions. It's easy to show that x - t is a function of ξ - η alone, and x + t is a function of ξ + η alone, so an equivalent form for the general solution is F(ξ - η) + G(ξ + η ). The particular solutions R and L result from making suitable choices for F and G. The value of R and L is that they may be used to expand arbitrary right- and left-going waves.
 
  • Like
Likes vanhees71, strangerep and dextercioby
Welcome back to PF, Bill_K. I've definitely missed your valuable contributions here.
 
dextercioby said:
Welcome back to PF, @Bill_K. I've definitely missed your valuable contributions here.
+1.

@WannabeNewton cried himself to sleep for a week when you (Bill_K) disappeared. :biggrin:
 
Welcome back Bill_K!
 
Yeah! Welcome back!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top