I Solutions to Simple Harmonic Motion second order differential equation

AI Thread Summary
The second order differential equation for simple harmonic motion is expressed as d²s/dt² = -k²s, where k is a positive constant. The primary solution is sinusoidal, represented by s = A cos(ωt + δ), with A as amplitude, ω related to frequency, and δ as phase displacement. There are indications that other functions may also satisfy this equation, suggesting the existence of additional independent solutions. The discussion emphasizes that the amplitude and phase parameters encompass the two independent solutions typically found in such equations. Exploring these alternative solutions could provide a deeper understanding of simple harmonic motion.
Trollfaz
Messages
143
Reaction score
14
All simple harmonic motion must satisfy
$$\frac{d^2s}{dt^2}=-k^2s$$
for a positive value k.
The most well known solution is the sinusoidal one
$$ s=Acos/sin(\omega t + \delta)$$
A is amplitude, ##\omega##is related to frequency and ##\delta## is phase displacement.
My lecturer said that there might be other functions that satisfy the second order differential equation and I would like to know some other solution to the equation
 
Physics news on Phys.org
A second order differential equation has two independent solutions. With the amplitude and phase parameters you are covering both of those.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top